Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:14:28.183Z Has data issue: false hasContentIssue false

Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland

Published online by Cambridge University Press:  22 August 2013

Simon A. F. Darroch
Affiliation:
Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520-8109, U.S.A. E-mail: [email protected]
Marc Laflamme
Affiliation:
Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, D.C. 20013-7012, U.SA. Present address: Department of Chemical and Physical Sciences, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
Matthew E. Clapham
Affiliation:
Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, California 95064, U.S.A.

Abstract

The presumed affinities of the Terminal Neoproterozoic Ediacara biota have been much debated. However, even in the absence of concrete evidence for phylogenetic affinity, numerical paleoecological approaches can be effectively used to make inferences about organismal biology, the nature of biotic interactions, and life history. Here, we examine the population structure of three Ediacaran rangeomorph taxa (Fractofusus, Beothukis, and Pectinifrons), and one non-rangeomorph taxon (Thectardis) across five fossil surfaces around the Avalon Peninsula, Newfoundland, through analysis of size-frequency distributions using Bayesian Information Criterion (BIC). Best-supported models resolve communities of all studied Ediacaran taxa at Mistaken Point as single cohorts with wide variance. This result is best explained in terms of a “continuous reproduction” model, whereby Ediacaran organisms reproduce aseasonally, so that multiple size modes are absent from preserved communities. Modern benthic invertebrates (both as a whole and within specific taxonomic groups) in deeper-water settings reproduce both seasonally and aseasonally; distinguishing between biological (i.e., continuous reproductive strategies) and environmental (lack of a seasonal trigger) causes for this pattern is therefore difficult. However, we hypothesize that the observed population structure could reflect the lack of a trigger for reproduction in deepwater settings (i.e., seasonal flux of organic matter), until the explosive appearance of mesozooplankton near the base of the Cambrian.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allison, P. A. 1988. Konservat-Lagerstätten: cause and definition. Paleobiology 14:331344.CrossRefGoogle Scholar
Babcock, R. C. 1991. Comparative demography of three species of scleractinian coral using age- and size-dependent classifications. Ecological Monographs 61:225244.CrossRefGoogle Scholar
Bak, R. P. M., and Meesters, E. M. 1998. Coral population structure: the hidden information of colony size-frequency distributions. Marine Ecology Progress Series 162:301306.CrossRefGoogle Scholar
Bak, R. P. M., and Meesters, E. M. 1999. Population structure as a response of coral communities to global change. American Zoologist 39:5665.CrossRefGoogle Scholar
Bamforth, E. L., Narbonne, G. M., and Anderson, M. M. 2008. Growth and ecology of an Ediacaran multibranched rangeomorph from the Mistaken Point Assemblage, Newfoundland. Journal of Paleontology 82:763777.CrossRefGoogle Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point, Avalon Zone, eastern Newfoundland). InLanding, E., Narbonne, G. M., and Myrow, P., eds. Trace fossils, small shelly fossils and the Precambrian–Cambrian Boundary. New York State Museum and Geological Survey Bulletin 463:89.Google Scholar
Bergquist, D. C., Williams, F. M., and Fisher, C. R. 2000. Longevity record for a deep-sea invertebrate. Nature 403:499500.CrossRefGoogle ScholarPubMed
Billet, D. S. M., and Hanson, B. 1982. Abyssal aggregations of Kolga hyalina Danielssen and Koren (Echinodermata: Holothurioidea) in the northeast Atlantic Ocean: a preliminary report. Deep Sea Research 29:799818.CrossRefGoogle Scholar
Bottjer, D. J., and Clapham, M. E. 2006. Evolutionary paleoecology of Ediacaran Benthic marine animals. Pp. 91114inXiao, S. and Kaufman, A. J., eds. Neoproterozoic geobiology and paleobiology. Springer, Dordrecht.CrossRefGoogle Scholar
Bowring, S. A., Myrow, P., Landing, E, and Ramenzani, J. 2003. Geochronological constraints on terminal Neoproterozoic events and the rise of Metazoans. Geophysical Research Abstracts 5:219.Google Scholar
Brasier, M. D., and Antcliffe, J. B. 2004. Decoding the Ediacaran enigma. Science 305:11151117.CrossRefGoogle ScholarPubMed
Brasier, M. D., and Antcliffe, J. B. 2009. Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. Journal of the Geological Society, London 166:363384.CrossRefGoogle Scholar
Brasier, M. D., Antcliffe, J. B., and Callow, R. H. T. 2010. Evolutionary trends in remarkable fossil preservation across the Ediacaran–Cambrian transition and the impact of metazoan mixing. InAllison, P. A. and Bottjer, D. J., eds. Taphonomy: process and bias through time. Topics in Geobiology 32:519567.CrossRefGoogle Scholar
Brasier, M. D., Antcliffe, J. B., and Liu, A. G. 2012. The architecture of Ediacaran fronds. Palaeontology 55:11051124.CrossRefGoogle Scholar
Butterfield, N. J. 2009. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:17.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 2011. Animals and the invention of the Phanerozoic Earth system. Trends in Ecology and Evolution 6:8187.CrossRefGoogle Scholar
Buss, L. W., and Seilacher, A. 1994. The Phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20:14.CrossRefGoogle Scholar
Chapman, R. E., and Hunt, G. 2001. Evaluating hypotheses of instar-grouping in arthropods: a maximum likelihood approach. Paleobiology 27:466484.Google Scholar
Clapham, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., Gehling, J. G., Greentree, C., and Anderson, M. M. 2004. Thectardis avalonensis: a new Ediacaran fossil from the Mistaken Point biota, Newfoundland. Journal of Paleontology 78:10311036.2.0.CO;2>CrossRefGoogle Scholar
Comtet, T., and Desbruyères, D. 1998. Population structure and recruitment in mytilid bivalves from the Lucky Strike and Menez Gwen hydrothermal vent fields (37°17′N and 37°50′N on the Mid-Atlantic Ridge. Marine Ecology Progress Series 163:165177.CrossRefGoogle Scholar
Cordes, E. E., Nybakken, J. W., and VanDykhuizen, G. 2001. Reproduction and growth of Anthomastus ritteri (Octocorallia: Alcyonacea) from Monterey Bay, California, USA. Marine Biology 138:491501.CrossRefGoogle Scholar
Cummins, H., Powell, E. N., Stanton, R. J., and Staff, G. 1986. The size-frequency distribution in paleoecology: effect of taphonomic process during formation of molluscan death assemblages in Texas bays. Palaeontology 29:495:518.Google Scholar
Darroch, S. A. F., Laflamme, M., Schiffbauer, J. D., and Briggs, D. E. G. 2012. Experimental formation of a microbial death mask. Palaios 27:293303.CrossRefGoogle Scholar
Dornbos, S. Q., Clapham, M. E., Fraiser, M. L., and Laflamme, M. 2012. Lessons from the fossil record: the Ediacaran radiation, the Cambrian radiation, and the end-Permian mass extinction. Pp. 5272inAspden, R. J. and Paterson, D. M., eds. Marine biodiversity futures and ecosystem functioning frameworks, methodologies and integration. Oxford University Press, Oxford.CrossRefGoogle Scholar
Droser, M. L., and Gehling, J. G. 2008. Synchronous aggregate growth in an abundant new Ediacaran tubular organism. Science 319:16611662.CrossRefGoogle Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2006. Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology 232:131147.CrossRefGoogle Scholar
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian ‘seapen' Rangea. Journal of Morphology 252:315334.CrossRefGoogle ScholarPubMed
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:10911097.CrossRefGoogle ScholarPubMed
Flude, L. I., and Narbonne, G. M. 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences 45:10951109.CrossRefGoogle Scholar
Forcucci, D. 1994. Population density, recruitment and 1991 mortality event of Diadema antillarum in the Florida Keys. Bulletin of Marine Science 54:917928.Google Scholar
Fraley, C., and Raftery, A. E. 1999. MCLUST: software for model-based cluster analysis. Journal of Classification 16:297306.CrossRefGoogle Scholar
Fraley, C., and Raftery, A. E. 2003. Enhanced model-based clustering, density estimation and discriminant analysis software: MCLUST. Journal of Classification 20:263286.CrossRefGoogle Scholar
Fraley, C., and Raftery, A. E. 2007. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155188.CrossRefGoogle Scholar
Fujita, T., and Ohta, S. 1989. Spatial structure within a dense bed of the brittle star Ophiura sarsi (Ophiuroidea: Echinodermata) in the bathyal zone off Otsuchi, northeastern Japan. Journal of the Oceanographical Society of Japan 45:289300.CrossRefGoogle Scholar
Fujita, T., and Ohta, S. 1990. Size structure of dense populations of the brittle star Ophiura sarsi (Ophiuroidea: Echinodermata) in the bathyal zone around Japan. Marine Ecology Progress Series 64:113122.CrossRefGoogle Scholar
Gage, J. D., and Tyler, P. A. 1991. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, London.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoir 20:181224.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:4057.CrossRefGoogle Scholar
Gehling, J. G., and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara biota tell time? Geology 41:447450.CrossRefGoogle Scholar
Gehling, J. G., and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point Assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences 44:367387.CrossRefGoogle Scholar
Glaessner, M. F., and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599628.Google Scholar
Gooday, A. J. 2002. Biologic responses to seasonally varying fluxes of organic matter to the ocean floor: a review. Journal of Oceanography 58:305322.CrossRefGoogle Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30:203221.2.0.CO;2>CrossRefGoogle Scholar
Grazhdankin, D., and Seilacher, A. 2005. A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geological Magazine 142:571582.CrossRefGoogle Scholar
Gurich, G. 1930. Uber den Kuibis-Quarzit in Sudwestafrika. Zeitschrift der Deutschen Geologischen Gesellschaft 82:637.Google Scholar
Hoffmann, H. J., O'Brien, S. J., and King, A. F. 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology 82:136.CrossRefGoogle Scholar
Hughes, T. P. 1984. Population dynamics based on individual size rather than age: a general model with a reef coral example. American Naturalist 123:778795.CrossRefGoogle Scholar
Hughes, T. P., and Jackson, J. B. C. 1985. Population dynamics and life histories of foliaceous corals. Ecological Monographs 55:141166.CrossRefGoogle Scholar
Ichaso, A. A., Dalrymple, R. W., and Narbonne, G. M. 2007. Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John's groups, west Conception Bay, Newfoundland. Canadian Journal of Earth Sciences 44:2541.CrossRefGoogle Scholar
Jenkins, R. J. F. 1985. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology 11:336355.CrossRefGoogle Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. The high-resolution estimates of temporal mixing in shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Laflamme, M., and Narbonne, G. M. 2008. Competition in a Precambrian world: palaeoecology of Ediacaran fronds. Geology Today 24:182187CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology 78:827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2007 Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon peninsula of Newfoundland. Geological Society of London Special Publications 286:237257.CrossRefGoogle Scholar
Laflamme, M., Xiao, S., and Kowalewski, M. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences USA. 106:1443814443.4CrossRefGoogle ScholarPubMed
Laflamme, M., Schiffbauer, J. D., and Narbonne, G. M. 2011. Deep-water microbially induced sedimentary structures (miss) in deep time: the Ediacaran fossil Ivesheadia. InNoffke, N. and Chafetz, H., eds. Microbial mats in siliciclastic depositional systems through time. SEPM Special Publication 101:111123.Google Scholar
Laflamme, M., Darroch, S. A. F., Tweedt, S., Peterson, K. J., and Erwin, D. H. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research 23:558573.CrossRefGoogle Scholar
Lightfoot, R. F., Tyler, P. A., and Gage, J. D. 1979. Seasonal reproduction in deep-sea bivalves and brittlestars. Deep Sea Research 26:967973.CrossRefGoogle Scholar
Little, C. T. S., Herrington, R. J., Maslennikov, V. V., and Zaykov, V. V. 1998. The fossil record of hydrothermal vent communities. InMills, R. A. and Harrison, K., eds. Modern ocean floor processes and the geological record. Geological Society of London Special Publication 148:259270.CrossRefGoogle Scholar
Lin, J., Gon, S. M. III, Gehling, J. G., Babcock, L. E., Zhao, Y., Zhang, X., Hu, S., Yuan, J. J., Yu, M., and Peng, J. 2006. A Parvancorina-like arthropod from the Cambrian of South China. Historical Biology 18:3345.CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., Antcliffe, J. B., and Brasier, M. D. 2011. Effaced preservation in the Ediacara biota of Avalonia and its implications for the early macrofossil record. Palaeontology 54:607630.CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., Matthews, J. J., and Brasier, M. D. 2012. A juvenile assemblage of Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society, London 169:395403.CrossRefGoogle Scholar
Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376:5356.CrossRefGoogle ScholarPubMed
McClain, C. R., and Mincks Hardy, S. 2010. The dynamics of biogeographic ranges in the deep sea. Proceedings of the Royal Society of London B 277:35333546.Google ScholarPubMed
Meesters, E. H., Hilterman, M., Kardinaal, E., Keetman, M., de Vries, M., and Bak, R. P. M. 2001. Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation. Marine Ecology Progress Series 209:4354.CrossRefGoogle Scholar
Menzies, R. J. 1965. Conditions for the existence of life on the abyssal sea floor. Oceanography and Marine Biology: an Annual Review 3:195210.Google Scholar
Morales-Nin, B., and Panfili, J. 2005. Seasonality in the deep sea and tropics revisited: what can otoliths tell us? Marine and Freshwater Research 56:585598.CrossRefGoogle Scholar
Myrow, P., and Kaufman, A. J. 1999. A newly-discovered cap carbonate above Varanger-aged glacial deposits in Newfoundland. Journal of Sedimentary Research 69:784793.CrossRefGoogle Scholar
Narbonne, G. M. 2004. Modular construction of Early Ediacaran complex life forms. Science 305:11411144.CrossRefGoogle ScholarPubMed
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33:421442.CrossRefGoogle Scholar
Narbonne, G. M., Dalrymple, R. W., and Gehling, J. G. 2001. Neoproterozoic fossils and environments of the Avalon Peninsula, Newfoundland. Geological Association of Canada/Mineralogical Association of Canada Annual Meeting, St. John's Newfoundland, Guidebook, Fieldtrip B5.Google Scholar
Narbonne, G. M., Dalrymple, R. W., Laflamme, M., Gehling, J. G. and Boyce, W. D. 2005. Mistaken Point biota and the Cambrian of the Avalon. Field Trip Guide, North American Paleontological Convention, Halifax, N.S.Google Scholar
Narbonne, G. M., Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology 83:503523.CrossRefGoogle Scholar
Narbonne., G. M., Xiao, S., and Shields, G. 2012. Ediacaran Period. Pp. 427449inGradstein, F., Ogg, J., and Ogg, G., eds. Geologic timescale 2012. Elsevier, Amsterdam.Google Scholar
Packer, D. B., Watling, L., and Langton, R. W. 1994. The population structure of the brittle star Ophiura sarsi Lütken in the Gulf of Maine and its trophic relationship to American plaice (Hippoglossoides platessoides Fabricus). Journal of Experimental Marine Biology and Ecology 179:207222.CrossRefGoogle Scholar
Petersen, K. J. 2005. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33:929932.CrossRefGoogle Scholar
Peterson, K. J., and Butterfield, N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings of the National Academy of Sciences USA 102:95479552.CrossRefGoogle ScholarPubMed
Pflug, H. D. 1970. Zur fauna der Nama-Schichten in Sudwest-Afrika, II. Rangeidae, Bau und systematische Zugehorigkeit. Palaeontographica 135:198231.Google Scholar
Pflug, H. D. 1972. Systematik derjung-prakambrischen Petalonamae. Palaeontologische Zeitschrift 46:5667.CrossRefGoogle Scholar
R Development Core Team. 2010. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Rokop, F. J. 1974. Reproductive patterns in the deep-sea benthos. Science 186:743745.CrossRefGoogle ScholarPubMed
Rokop, F. J. 1977. Patterns of reproduction in the deep-sea benthic crustaceans: a re-evaluation. Deep Sea Research 24:683691.CrossRefGoogle Scholar
Rowe, G. T. 1971. Observations on bottom currents and epibenthic populations in Hatteras Submarine Canyon. Deep Sea Research 18:569581.Google Scholar
Rowe, G. T. 1972. The exploration of submarine canyons and their benthic faunal assemblages. Proceedings of the Royal Society of Edinburgh B 73:159169.CrossRefGoogle Scholar
Seilacher, A. 1970. Begriff und Bedeutung der Fossil-Lagerstätten. Neues Jahrbuch fur Geologie und Paläontologie 7:3439. [In German.]Google Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229239.CrossRefGoogle Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian palaeobiology. InVickers-Rich, P. and Komarower, P., eds. The rise and fall of the Ediacaran biota. Geological Society of London Special Publication 286:355368.CrossRefGoogle Scholar
Sperling, E. A., Peterson, K. J., and Laflamme, M. 2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran ocean. Geobiology 9:2433.CrossRefGoogle Scholar
Strathmann, R. R. 1985. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annual Review of Ecology and Systematics 16:339361.CrossRefGoogle Scholar
Strathmann, R. R. 1993. Hypotheses on the origins of marine larvae. Annual Review of Ecology and Systematics 24:89117.CrossRefGoogle Scholar
Sumrall, C. D. 2010. The systematics of a new Upper Ordovician edrioasteroid pavement from northern Kentucky. Journal of Paleontology 84:783794.CrossRefGoogle Scholar
Turekian, K. K., Cochran, J. K., Kharkar, D. P., Cerrato, R. M., Vaisnys, J. R., Sanders, H. L., Grassle, J. F., and Allen, J. A. 1975. Slow growth rate of a deep-sea clam determined by 228 Ra chronology. Proceedings of the National Academy of Sciences USA 72:28292832.CrossRefGoogle Scholar
Tyler, P. A. 1988. Seasonality in the deep-sea. Oceanography and Marine Biology, an Annual Review 26:227258.Google Scholar
Tyler, P. A., and Young, C. M. 1992. Reproduction in marine invertebrates in “stable” environments: the deep sea model. Invertebrate Reproduction and Development 22:185192.CrossRefGoogle Scholar
Tyler, P. A., Billett, D. S. M., and Gage, J. D. 1990. Seasonal reproduction in the seastar Dytaster grandis from 4000m in the north-east Atlantic Ocean. Journal of the Marine Biological Association of the United Kingdom 70:173180.CrossRefGoogle Scholar
Waggoner, B. M. 1999. Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology 25:440458CrossRefGoogle Scholar
Waggoner, B. M. 2003. The Ediacaran biotas in space and time. Integrated and Comparative Biology 43:104113.CrossRefGoogle ScholarPubMed
Wilby, P. R., Carney, J. N., and Howe, M. P. A. 2011. A rich Ediacaran assemblage from eastern Avalonia: evidence of early widespread diversity in the deep ocean. Geology 39:655658.CrossRefGoogle Scholar
Witte, U. 1996. Seasonal reproduction in deep-sea sponges—triggered by vertical particle flux? Marine Biology 124:157581.CrossRefGoogle Scholar
Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E. 2003. Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences 40:13751391.CrossRefGoogle Scholar
Xiao, S., and Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology, and evolution of the Ediacara biota. Trends in Ecology and Evolution 24:3140.CrossRefGoogle ScholarPubMed
Young, C. M. 2003. Reproduction, development, and life-history traits. Pp. 381424inTyler, P. A., ed. Ecosystems of the world, Vol. 28. Ecosystems of the deep oceans. Elsevier, Amsterdam.Google Scholar
Zamora, S., Darroch, S. A. F., and Rahman, I. 2013.Taphonomy and ontogeny of early pelmatozoan echinoderms: a case study of a mass mortality assemblage of Gogia from the Cambrian of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 377:6272.CrossRefGoogle Scholar