Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T04:31:43.889Z Has data issue: false hasContentIssue false

Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace-makers

Published online by Cambridge University Press:  08 February 2016

Allen G. Collins
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California 94720. E-mail: [email protected], [email protected], [email protected]
Jere H. Lipps
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California 94720. E-mail: [email protected], [email protected], [email protected]
James W. Valentine
Affiliation:
Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, California 94720. E-mail: [email protected], [email protected], [email protected]

Abstract

The bulk of Neoproterozoic trace fossils can be interpreted as horizontal creeping trails produced by minute vermiform organisms moving on or just beneath the seafloor or under algal mats. We have investigated the formation of trails by living cnidarians and platyhelminths that creep by cilia on mucus ribbons. These relatively simple metazoans produce trails that are similar in size and morphology to some Neoproterozoic traces, owing to the entrainment of sediment within their mucus trails. Thus a mucociliary locomotory system provides sufficient means to form some types of Neoproterozoic traces. It follows that the body architectures of the Neoproterozoic trace-makers may have been quite simple, though complex bodyplans are, of course, not ruled out. Thus, the use of Neoproterozoic trace fossils to constrain the time of origin of bilaterians or of any crown-group bilaterian taxon remains questionable.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, A. M. 1981. The Umfolozia arthropod trackways in the Permian Dwyka and Ecca series of South Africa. Journal of Paleontology 55:84108.Google Scholar
Arai, M. N. 1972. The muscular system of Pachycerianthus fimbriatus. Canadian Journal of Zoology 50:311317.Google Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences USA 95:606611.Google Scholar
Balavoine, G., and Adoutte, A. 1998. One or three Cambrian radiations? Science 280:397398.Google Scholar
Beninger, P. G., Lynn, J. W., Dietz, T. H., and Silverman, H. 1997. Mucociliary transport in living tissue: the two-layer model confirmed in the mussel Mytilus edulis L. Biological Bulletin 193:47.Google Scholar
Brasier, M. D., and McIlroy, D. 1998. Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals. Journal of the Geological Society, London 155:512.Google Scholar
Bromham, L., Rambout, A., Fortey, R., Cooper, A., and Penny, D. 1998. Testing the Cambrian explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences USA 95:1238612389.Google Scholar
Brusca, G. J., and Brusca, R. C. 1978. Invertebrates. Sinauer, Sunderland, Mass.Google Scholar
Buss, L. W., and Seilacher, A. 1994. The phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20:14.Google Scholar
Clark, R. B. 1964. Dynamics in metazoan evolution. Oxford University Press, Oxford.Google Scholar
Collins, A. G. 1998. Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proceedings of the National Academy of Sciences USA 95:1545815463.Google Scholar
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic-Cambrian boundary. Pp. 177202in Lipps, J. H. and Signor, P. W., eds. Origin and Early Evolution of the Metazoa. Plenum, New York.Google Scholar
Crozier, W. J. 1918. On the method of progression in polyclads. Proceedings of the National Academy of Sciences USA 4:379381.Google Scholar
Droser, M., Gehling, J. G., and Jensen, S. 1999. When the worm turned: concordance of Early Cambrian ichnofabric and tracefossil record in siliciclastic rocks of South Australia. Geology 27:625629.Google Scholar
Emson, R. H., and Whitfield, P. J. 1991. Behavioural and ultra-structural studies on the sedentary platyctenean ctenophore Yallicula nubiformis. Hydrobiologia 216/217:2733.Google Scholar
Fedonkin, M. A. 1992. Vendian faunas and the early evolution of Metazoa. Pp. 87129in Lipps, J. H. and Signor, P. W., eds. Origin and early evolution of the Metazoa. Plenum, New York.Google Scholar
Fedonkin, M. A., and Runnegar, B. 1992. Proterozoic metazoan trace fossils. Pp. 389395in Schopf, J. W. and Klein, C., eds. The Proterozoic biosphere. Cambridge University Press, Cambridge.Google Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388:868871.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society 57:1333.Google Scholar
Fransen, M. E. 1980. Ultrastructure of coelomic organization in annelids: archiannelids and other small polychaetes. Zoomorphologie 95:235249.Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: ediacaran death masks. Palaios 14:4057.Google Scholar
Glaessner, M. 1984. The dawn of animal life. Cambridge University Press, Cambridge.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270:598604.Google Scholar
Haszprunar, G. 1996. The Mollusca: coelomate turbellarians or mesenchymate annelids? Pp. 128in Taylor, J., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Jensen, S., Gehling, J. G., Runnegar, B. N., and Droser, M. L. 1999. Trace fossils and bioturbation in the Proterozoic. Journal of Conference Abstracts 4:264.Google Scholar
Keighley, D. G., and Pickerill, R. K. 1996. Small Cruziana, Rusophycus, and related ichnotaxa from eastern Canada: the nomenclatorial debate and systematic ichnology. Ichnos 4:261285.Google Scholar
Kerr, R. A. 1999. Earliest animals growing younger? Science 284:412.Google Scholar
Kim, J., Kim, W., and Cunningham, C. W. 1999. A new perspective on lower metazoan relationships from 18S rDNA sequences. Molecular Biology and Evolution 16:423427.Google Scholar
Landing, E., and Westrop, S. R., eds. 1998. Avalon 1997: the Cambrian standard. New York State Museum Bulletin 492:192.Google Scholar
Li, C. W., Chen, J. Y., and Hua, T. E. 1998. Precambrian sponges with cellular structures. Science 279:879882.Google Scholar
Lynch, M. 1999. The age and relationships of the major animal phyla. Evolution 53:319325.Google Scholar
Mariscal, R. N., Conklin, E. J., and Bigger, C. H. 1977. The ptychocyst, a major new category of cnida used in tube construction by a cerianthid anemone. Biological Bulletin 152:392405.Google Scholar
McIlroy, D., and Logan, G. A. 1999. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition. Palaios 14:5872.Google Scholar
Narbonne, G., and Aitken, J. D. 1990. Ediacaran fossils from the Sewki Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology 33:945980.Google Scholar
Rai, V., and Gautam, R. 1999. Evaluating evidence of ancient animals. Science 284:1235.Google Scholar
Ross, D. M., and Horridge, G. A. 1957. Responses of Cerianthus (Coelenterata). Nature 180:1386–1370.Google Scholar
Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A., and Baguna, J.J. 1999. Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science 283:19191923.Google Scholar
Seilacher, A. 1998. Precambrian trace fossils. Geological Society of America Abstracts with Programs 30:A-147.Google Scholar
Seilacher, A., Bose, P. K., and Pfluger, F.F. 1988. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:8083.Google Scholar
Seilacher, A., Bose, P. K., and Pfluger, F.F. 1999. Evaluating evidence of ancient animals: response. Science 284:1235.Google Scholar
Sleigh, M. A., Blake, J. R., and Liron, N. 1988. The propulsion of mucus by cilia. American Revue of Respiratory Diseases 137:726741.Google Scholar
Thomas, A. 1998. Trace fossils and the Cambrian explosion—reply. Trends in Ecology and Evolution 13:307.Google Scholar
Valentine, J. W. 1994. Late Precambrian bilaterians: grades and clades. Proceedings of the National Academy of Sciences USA 91:67516757.Google Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851859.Google Scholar
Wang, D. Y.-C., Kumar, S., and Hedges, S. B. 1999. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society of London B 266:163171.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274:568573.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553558.Google Scholar