Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:58:37.308Z Has data issue: false hasContentIssue false

Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming

Published online by Cambridge University Press:  08 April 2016

Edward C. Theriot
Affiliation:
Texas Memorial Museum, 2400 Trinity Street, University of Texas, Austin, Texas 78705. E-mail: [email protected]
Sherilyn C. Fritz
Affiliation:
Department of Geosciences and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0340
Cathy Whitlock
Affiliation:
Department of Earth Sciences, Montana State University, Bozeman, Montana 59715
Daniel J. Conley
Affiliation:
Department of Marine Ecology, National Environmental Research Institute, Post Office Box 358, DK-4000 Roskilde, Denmark

Abstract

The centric diatom Stephanodiscus yellowstonensis Theriot and Stoermer is endemic to Yellowstone Lake, where it can be an important component of the summer phytoplankton assemblage. Its close relative, Stephanodiscus niagarae Ehrenberg, is abundant in nearby lakes and regional reservoirs. We used the stratigraphic record of Yellowstone Lake to investigate the evolution of S. niagarae to S. yellowstonensis and to describe the limnologic and climatic conditions associated with its evolution. A dramatic morphological shift took place between about 13.7 and 10.0 Ka, but morphology remained stable from 10 Ka to the present. Coincident with morphological change in the S. niagarae/S. yellowstonensis complex were changes in the diatom species assemblage, biogenic silica concentrations, sediment lithology, and regional vegetation. These changes suggest an environment that experienced progressive warming following the retreat of continental glaciers. We could not identify a specific selective factor driving evolution. Nevertheless, nonrandom morphological evolution strongly associated with continuous environmental change suggests that directional selection is a reasonable hypothesis to account for evolution of S. yellowstonensis. Protists are presumed to evolve gradually after speciation events because of large population size, high dispersal capacity, and low reproductive barriers. However, published diatom examples and the evolution of S. yellowstonensis suggest that it is premature to generalize about rates of evolution in protists, or at least to include diatoms in this generalization.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arnold, A. J. 1983. Phyletic evolution in the Goborotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology 9:390398.Google Scholar
Bacon, C. R. 1983. Eruptive history of Mount Mazama and Crater Lake Caldera, Cascade Range, USA. Journal of Volcanology and Geothermal Research 18:57115.CrossRefGoogle Scholar
Baker, C. 1983. Evolution and hybridization in the radiolarian genera Theocorythium and Lamprocyclas . Paleobiology 9:341354.Google Scholar
Baker, R. G. 1976. Late Quaternary vegetation history of the Yellowstone Lake Basin, Wyoming. U.S. Geological Survey Professional Paper 729-E:E1E48.Google Scholar
Barnosky, C. W., Anderson, P. M. and Bartlein, P. J. 1987. The northwestern U. S. during deglaciation; vegetational history and paleoclimatic implications. Pp. 289321 in Wright, H. E. and Ruddiman, W. F., eds. North America and adjacent oceans during the last deglaciation. Geology of North America, Vol. K-3. Geological Society of America, Boulder, Colo.Google Scholar
Battarbee, R. W. 1973. A new method for the estimation of absolute microfossil numbers with reference especially to diatoms. Limnology and Oceanography 18:647653.Google Scholar
Benton, M. J., and Pearson, P. N. 2001. Speciation in the fossil record. Trends in Ecology and Evolution 16:405411.Google Scholar
Brown, T. A., Nelson, D. E., Mathews, R. W., Vogel, J. S., and Southan, J. R. 1989. Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32: 302–212.Google Scholar
Burckle, L. H., and Trainer, J. 1979. Middle and Late Pliocene diatom datum levels from the Central Pacific. Micropaleontology 25:281293.Google Scholar
Chiba, S. 1996. A 40,000-year record of discontinuous evolution of island snails. Paleobiology 22:177188.CrossRefGoogle Scholar
Crow, J. F., and Kimura, M. 1970. An introduction to population genetics theory. Harper and Row, New York.Google Scholar
Cupp, E. E. 1943. Marine plankton diatoms of the west coast of North America. Bulletin of the Scripps Institution of Oceanography 5:1237.Google Scholar
de Vargas, C., Norris, R., Zaninetti, L., Gibb, S. W., and Pawlowski, J. 1999. Molecular evidence of cryptic speciation in planktonic foraminifers and their relation to oceanic provinces. Proceedings of the National Academy of Sciences USA 96:28642868.Google Scholar
de Vargas, C., Renaud, S., Hillbrecht, H., and Pawlowski, J. 2001. Pleistocene adaptive radiation in Globorotalia truncatulinoides: genetic, morphologic, and environmental evidence. Paleobiology 27:104125.Google Scholar
DeMaster, D. J. 1981. The supply and accumulation of silica in the marine environment. Geochimica et Cosmochimica Acta 45:17151732.Google Scholar
Despain, D. G. 1990. Yellowstone vegetation; consequences of environment and history in a natural setting. Roberts Rinehart, Boulder, Colo. Google Scholar
Edgar, S. M., and Theriot, E. C. 2004. Phylogeny of Aulacoseira (Bacillariophyta) based on molecules and morphology. Journal of Phycology 40:772788.Google Scholar
Faegri, K., Kaland, P. E., and Krzywinski, K. 1989. Textbook of pollen analysis. Wiley, New York.Google Scholar
Falconer, D. S. 1989. Introduction to quantitative genetics, 3d ed. Wiley, New York.Google Scholar
Fenster, E. J., Sorhannus, U., Burckle, L. H., and Hoffman, A. 1989. Patterns of morphological change in the Neogene diatom Nitzschia jouseae Burckle. Historical Biology 2:197211.Google Scholar
Finlay, B. J., Monaghan, E. B., and Maberly, S. C. 2002. Hypothesis: the rate and scale of dispersal of freshwater diatom species is a function of their global abundance. Protist 153:261273.Google Scholar
Frey, J. K. 1993. Modes of peripheral isolate formation and speciation. Systematic Biology 42:373381.Google Scholar
Good, J. M., and Pierce, K. L. 1996. Interpreting the landscape: Recent and ongoing geology of Grand Teton and Yellowstone National Parks. Grand Teton Natural History Association, Grand Teton National Park, Moose, Wyo. Google Scholar
Hunter, R. S. T., Arnold, A. J., and Parker, W. C. 1988. Evolution and homeomorphy in the development of the Paleocene Planorotalites pseudomenardii and the Miocene Globorotalia (Globorotalia) margaritae lineages. Micropaleontology 34:181192.Google Scholar
Interlandi, S. J., Kilham, S. S., and Theriot, E. C. 1999. Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone Ecosystem. Limnology and Oceanography 44:668682.Google Scholar
Jablonski, D. 2000. Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology‘s perspective. Paleobiology 26(Suppl. to No. 4):1552.Google Scholar
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology 1:359370.Google Scholar
Kellogg, D. E., and Hays, J. D. 1975. Microevolutionary patterns in late Cenozoic radiolaria. Paleobiology 1:150160.Google Scholar
Kelts, K. R., Briegel, U., Ghilard, K., and Hsu, K. J. 1986. The limnogeology ETH coring system. Schweiz Zeitschrift für Hydrologie 48:104115.Google Scholar
Kilham, S. S., Theriot, E. C., and Fritz, S. C. 1996. Linking planktonic diatoms and climate change using resource theory in the large lakes of the Yellowstone ecosystem. Limnology and Oceanography 41:10521062.Google Scholar
Kociolek, J. P., and Spaulding, S. A. 2000. Freshwater diatom biogeography. Nova Hedwigia 71:223241.Google Scholar
Koizumi, I., and Yanagisawa, Y. 1990. Evolutionary change in diatom morphology—an example from Nitzschia fossilis to Pseudoeunotia doliolus . Transactions and Proceedings of the Palaeontological Society of Japan, new series 157:347359.Google Scholar
Kucera, M., and Malmgren, B. A. 1998. Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous Planktonic Foraminifera. Paleobiology 24:4963.Google Scholar
Lande, R. 1985. Expected time for random genetic drift of a population between stable phenotype states. Proceedings of the National Academy of Sciences USA 82:76417645.Google Scholar
Lande, R. 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiology 12:343354.Google Scholar
Lazarus, D. 1986. Tempo and mode of morphologic evolution near the origin of the radiolarian lineage Pterocanium prismatum . Paleobiology 12:175189.Google Scholar
Lazarus, D., Hilbrecht, H., Spencer-Cervato, C., and Thierstein, H. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides . Paleobiology 21:2851.Google Scholar
Locke, W. W., and Meyer, G. A. 1994. A 12,000-year record of vertical deformation across the Yellowstone caldera margin: the shorelines of Yellowstone Lake. Journal of Geophysical Research 99:2007920094.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage: DSDP site 284, southwest Pacific. Paleobiology 7:230240.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohman, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.Google Scholar
Mann, D. G., and Droop, S. J. M. 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:1932.Google Scholar
Mehringer, P. J. Jr., Sheppard, J. C., and Foit, F. F. 1984. The age of Glacier Peak tephra in west-central Montana. Quaternary Research 21:3641.CrossRefGoogle Scholar
Millspaugh, S. H., Whitlock, C., and Bartlein, P. J. 2000. Variations in fire frequency and climate over the past 17000 yr in central Yellowstone National Park. Geology 28:211214.Google Scholar
Norris, R. D., Corfield, R. M., and Cartlidge, J. 1996. What is gradualism? Cryptic speciation in globorotalid foraminifera. Paleobiology 22:386405.Google Scholar
Pearson, P. N., Shackleton, N. J., and Hall, M. A. 1997. Stable isotope evidence for the sympatric divergence of Globigerinoides trilobus and Orbulina universa (planktonic foraminifera). Journal of the Geological Society, London 154:295302.Google Scholar
Porter, S. C., Pierce, K. L., and Hamilton, T. D. 1983. Late Wisconsin mountain glaciation in the western United States. Pp. 71111 in Porter, S. C., ed. Late Quaternary environments of the United States. University of Minnesota Press, Minneapolis.Google Scholar
Roh, H. 2000. Resource requirements and competitive abilities of diatoms from the greater Yellowstone ecosystem for silicon and nitrogen. . Drexel University, Philadelphia.Google Scholar
Round, F. E., Crawford, R. M., and Mann, D. G. 1990. The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge.Google Scholar
Sancetta, C. 1989. Processes controlling the accumulation of diatoms in sediments: a model derived from British Columbia fjords. Paleoceanography 4:235251.Google Scholar
Sarna-Wojcicki, A. M., Champion, D. E., and Davis, J. O. 1983. Holocene volcanism in the conterminous United States and the role of silicic volcanic ash layers in the correlation of latest Pleistocene and Holocene deposits. Pp. 5277 in Wright, H. E., ed. Late Quaternary environments of the United States, Vol. 2. University of Minnesota Press, Minneapolis.Google Scholar
Schrader, H. J. 1973. Cenozoic diatoms from the Northeast Pacific, Leg 18. In L. D. Kulm and R. von Huene, eds. Initial Reports of the Deep Sea Drilling Project 18:673765.Google Scholar
Schrader, H. J. 1974. Cenozoic marine planktonic diatom stratigraphy of the tropical Indian Ocean. In Fisher, R. L. and Bunce, E. T., eds. Initial Reports of the Deep Sea Drilling Project 24:887941.Google Scholar
Sorhannus, U. 1990a. A new planktonic diatom species, Rhizosolenia sigmoida, from upper Pliocene sediments of the equatorial Pacific. Micropaleontology 36:102103.Google Scholar
Sorhannus, U. 1990b. Punctuated morphological change in a Neogene diatom lineage: “local” evolution or migration? Historical Biology 3:241247.Google Scholar
Sorhannus, U., Fenster, E. J., Burckle, L. H., and Hoffman, A. 1988. Cladogenetic and anagenetic changes in the morphology of Rhizosolenia praebergonii Mukhina. Historical Biology 1:185205.Google Scholar
Sorhannus, U., Fenster, E. J., Burckle, L. H., and Hoffman, A. 1991. Iterative evolution in the diatom genus Rhizosolenia . Lethaia 24:3944.Google Scholar
Stuiver, M., Reimer, P. J., and Braziunas, T. F. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:11271151.Google Scholar
Sundström, Bo. 1986. The marine diatom genus Rhizosolenia: a new approach to the taxonomy. . Lund University, Lund, Sweden.Google Scholar
Taylor, S. M. 1994. Resource requirements and competitive interactions of two closely related Stephanodiscus species for nitrogen and silica. . Drexel University, Philadelphia.Google Scholar
Theriot, E. 1984. Morphological variation in Stephanodiscus niagarae (Bacillariophyceae). . University of Michigan, Ann Arbor.Google Scholar
Theriot, E. 1987. Principal component analysis and taxonomic interpretation of environmentally related variation in silicification in Stephanodiscus (Bacillariophyceae). British Phycological Journal 22:359373.Google Scholar
Theriot, E. 1992. Clusters, species concepts and morphological evolution of diatoms. Systematic Biology 41:141157.CrossRefGoogle Scholar
Theriot, E., and Stoermer, E. F. 1981. Some aspects of morphological variation in Stephanodiscus niagarae (Bacillariophyceae). Journal of Phycology 17:6472.Google Scholar
Theriot, E., and Stoermer, E. F. 1984a. Principal component analysis of Stephanodiscus: observations on two new species from the Stephanodiscus niagarae complex. Bacillaria 7:3758.Google Scholar
Theriot, E., and Stoermer, E. F. 1984b. Principal component analysis of variation in Stephanodiscus rotula and S. niagarae (Bacillariophyceae). Systematic Botany 9:5359.Google Scholar
Theriot, E., and Stoermer, E. F. 1984c. Principal component analysis of character variation in Stephanodiscus niagarae Ehrenb.: morphological variation related to lake trophic status. Pp. 97111 in Mann, D. G., ed. Proceedings of the seventh international diatom symposium. Koeltz, Koenigstein.Google Scholar
Theriot, E., Qi, Y. Z., Yang, J. R., and Ling, L. Y. 1988. Taxonomy of the diatom Stephanodiscus niagarae from a fossil deposit in Jingyu County, Jilin Province, China. Diatom Research 3:145153.Google Scholar
Theriot, E. C., Fritz, S. C., and Gresswell, R. E. 1997. Long-term limnological data from the larger lakes of Yellowstone National Park. Journal of Arctic and Alpine Research 29:304314.Google Scholar
Thompson, R. S., Whitlock, C., Bartlein, P. J., Harrison, S. P., and Spaulding, W. G. 1993. Climatic changes in the western United States since 18,000 yr B. P. Pp. 468513 in Wright, H. E., ed. Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis.Google Scholar
Tiller, C. C. 1995. Postglacial sediment stratigraphy of large lakes in greater Yellowstone. . University of Minnesota, Minneapolis.Google Scholar
Waddington, J. C. B., and Wright, H. E. Jr. 1974. Late Quaternary vegetational changes on the east side of Yellowstone National Park, Wyoming. Quaternary Research 4:175184.Google Scholar
Wei, K.-Y., and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella . Paleobiology 14:345363.Google Scholar
Wells, J. T., and Shanks, A. L. 1987. Observations and geological significance of marine snow in a shallow-water, partially enclosed marine embayment. Journal of Geophysical Research 92:185190.Google Scholar
Whitlock, C. 1993. Postglacial vegetation and climate of Grand Teton and southern Yellowstone National Parks. Ecological Monographs 63:173198.Google Scholar
Whitlock, C., and Bartlein, P. J. 1993. Spatial variations of Holocene climatic change in the Yellowstone region. Quaternary Research 39:231238.Google Scholar
Wiley, E. O. 1981. Phylogenetics: the theory and practice of phylogenetic systematics. Wiley, New York.Google Scholar