Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T07:43:41.589Z Has data issue: false hasContentIssue false

Hearing from the ocean and into the river: the evolution of the inner ear of Platanistoidea (Cetacea: Odontoceti)

Published online by Cambridge University Press:  31 March 2021

Mariana Viglino*
Affiliation:
Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina. E-mail: [email protected], [email protected], [email protected]
Maximiliano Gaetán
Affiliation:
Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina. E-mail: [email protected], [email protected], [email protected]
Mónica R. Buono
Affiliation:
Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina. E-mail: [email protected], [email protected], [email protected]
R. Ewan Fordyce
Affiliation:
Department of Geology, University of Otago, Box 56, Dunedin9054, New Zealand. E-mail: [email protected]
Travis Park
Affiliation:
Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BDLondon, United Kingdom. E-mail: [email protected]
*
*Corresponding author.

Abstract

The inner ear of the two higher clades of modern cetaceans (Neoceti) is highly adapted for hearing infrasonic (mysticetes) or ultrasonic (odontocetes) frequencies. Within odontocetes, Platanistoidea comprises a single extant riverine representative, Platanista gangetica, and a diversity of mainly extinct marine species from the late Oligocene onward. Recent studies drawing on features including the disparate tympanoperiotic have not yet provided a consensus phylogenetic hypothesis for platanistoids. Further, cochlear morphology and evolutionary patterns have never been reported. Here, we describe for the first time the inner ear morphology of late Oligocene–early Miocene extinct marine platanistoids and their evolutionary patterns. We initially hypothesized that extinct marine platanistoids lacked a specialized inner ear like P. gangetica and thus, their morphology and inferred hearing abilities were more similar to those of pelagic odontocetes. Our results reveal there is no “typical” platanistoid cochlear type, as the group displays a disparate range of cochlear anatomies, but all are consistent with high-frequency hearing. Stem odontocete Prosqualodon australis and platanistoid Otekaikea huata present a tympanal recess in their cochlea, of yet uncertain function in the hearing mechanism in cetaceans. The more basal morphology of Aondelphis talen indicates it had lower high-frequency hearing than other platanistoids. Finally, Platanista has the most derived cochlear morphology, adding to evidence that it is an outlier within the group and consistent with a >9-Myr-long separation from its sister genus Zarhachis. The evolution of a singular sound production morphology within Platanistidae may have facilitated the survival of Platanista to the present day.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

3D Systems. 2017. Geomagic Wrap. http://www.geomagic.com/en/products/wrap/overview, 1 August 2019.Google Scholar
Adams, D. C. 2014. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology 63:685697.CrossRefGoogle ScholarPubMed
Adams, D. C., and Otárola-Castillo, E.. 2013. geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4:393399.CrossRefGoogle Scholar
Anderson, J. 1878. Anatomical and zoological researches comprising an account of the zoological results of the two expeditions to western Yunnan in 1868 and 1875 and a monograph of the two cetacean genera, Platanista and Orcella. B. Quaritch, London.CrossRefGoogle Scholar
Barnes, L. G., Kimura, T., and Godfrey, S. J.. 2010. The evolutionary history and phylogenetic relationships of the Superfamily Platanistoidea. Pp. 445488 in Ruiz-Garcia, M. and Shostell, J., eds. Biology, evolution and conservation of river dolphins. Nova Science Publishers, New York.Google Scholar
Bianucci, G., de Muizon, C., Urbina, M., and Lambert, O.. 2020. Extensive diversity and disparity of the Early Miocene platanistoids (Cetacea, Odontoceti) in the southeastern Pacific (Chilcatay Formation, Peru). Life 10:27.CrossRefGoogle Scholar
Boersma, A. T., and Pyenson, N. D.. 2016. Arktocara yakataga, a new fossil odontocete (Mammalia, Cetacea) from the Oligocene of Alaska and the antiquity of Platanistoidea. PeerJ 4:e2321.CrossRefGoogle ScholarPubMed
Boersma, A. T., McCurry, M. R., and Pyenson, N. D.. 2017. A new fossil dolphin Dilophodelphis fordycei provides insight into the evolution of supraorbital crests in Platanistoidea (Mammalia, Cetacea). Royal Society Open Science 4:170022.CrossRefGoogle Scholar
Braulik, G. T., and Smith, B. D.. 2019. Platanista gangetica (amended version of 2017 assessment). IUCN Red List of Threatened Species 2019:e.T41758A151913336.Google Scholar
Braulik, G. T., Barnett, R., Odon, V., Islas-Villanueva, V., Hoelzel, A. R., and Graves, J. A.. 2015. One species or two? Vicariance, lineage divergence and low mtDNA diversity in geographically isolated populations of South Asian river dolphin. Journal of Mammalian Evolution 22:111120.CrossRefGoogle Scholar
Cassens, I., Vicario, S., Waddell, V. G., Balchowsky, H., Van Belle, D., Ding, W., Chen, F., R, F.. Mohan, S. L., Simoes-Lopes, P. C., Bastida, R., Meyer, A., Stanhope, M. J., and Milinkovitch, M. C.. 2000. Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proceedings of the National Academy of Sciences USA 97:1134311347.CrossRefGoogle ScholarPubMed
Cavin, L., and Guinot, G.. 2014. Coelacanths as “almost living fossils.” Frontiers in Ecology and Evolution 2:149.CrossRefGoogle Scholar
Churchill, M., Martinez-Caceres, M., de Muizon, C., Mnieckowski, J., and Geisler, J. H.. 2016. The origin of high-frequency hearing in whales. Current Biology 26:21442149.CrossRefGoogle ScholarPubMed
Costeur, L., Grohe, C., Aguirre-Fernandez, G., Ekdale, E., Schulz, G., Muller, B., and Mennecart, B.. 2018. The bony labyrinth of toothed whales reflects both phylogeny and habitat preferences. Scientific Reports 8:7841.CrossRefGoogle ScholarPubMed
Cuitiño, J. I., Buono, M. R., Viglino, M., Farroni, N. D., and Bessone, S.. 2019. Factors affecting the preservation and distribution of cetaceans in the lower Miocene Gaiman Formation of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 526:110125.CrossRefGoogle Scholar
de Muizon, C. 1987. The affinities of Notocetus vanbenedeni, an early Miocene Platanistoid (Cetacea, Mammalia) from Patagonia. American Museum Novitates 2904:127.Google Scholar
de Muizon, C. 1988. Les relations phylogénétiques des Delphinida. Annales de Paléontologie 74:159227.Google Scholar
de Muizon, C. 1994. Are the Squalodonts related to the Platanistoids? Proceedings of the San Diego Society of Natural History 29:135146.Google Scholar
Dowsett, H. J., and Wiggs, L.B.. 1992. Planktonic foraminiferal assemblage of the Yorktown Formation, Virginia, USA. Micropaleontology 38:7586.CrossRefGoogle Scholar
Ekdale, E. G. 2016a. Form and function of the mammalian inner ear. Journal of Anatomy 228:324337.CrossRefGoogle Scholar
Ekdale, E. G. 2016b. Morphological variation among the inner ears of extinct and extant baleen whales (Cetacea: Mysticeti). Journal of Morphology 277:15991615.CrossRefGoogle Scholar
Ekdale, E. G., and Racicot, R. A.. 2015. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. Journal of Anatomy 226:2239.CrossRefGoogle Scholar
Fordyce, R. E. 1994. Waipatia maerewhenua, new genus and new species (Waipatiidae, new family), an archaic Late Oligocene dolphin (Cetacea: Odontoceti: Platanistoidea) from New Zealand. Proceedings of the San Diego Society of Natural History 29:147176.CrossRefGoogle Scholar
Fordyce, R. E. 2018. Cetacean evolution. Pp. 180185 in Würsig, B., Thewissen, J. G. M., and Kovacs, K., eds. Encyclopedia of marine mammals, 3rd ed. Academic Press, London.CrossRefGoogle Scholar
Fordyce, R. E., and Barnes, L. G.. 1994. The evolutionary history of whales and dolphins. Annual Review of Earth and Planetary Sciences 22:419455.CrossRefGoogle Scholar
Fordyce, R. E., and de Muizon, C.. 2001. Evolutionary history of cetaceans: a review. Pp. 169233 in Mazin, J.-M., and De Buffrénil, V., eds. Secondary adaptations of tetrapods to life in water. Verlag Dr. Friedrich Pfeil, Munich.Google Scholar
Fraser, F. C., and Purves, P. E.. 1960. Hearing in cetaceans: evolution of the accessory air sacs and the structure and function of the outer and middle ear in recent cetaceans. Bulletin of the British Museum of Natural History Zoology 7:1140.CrossRefGoogle Scholar
Gaetán, C., Buono, M. R., and Gaetano, L.. 2019. Prosqualodon australis (Cetacea: Odontoceti) from the Early Miocene of Patagonia, Argentina: redescription and phylogenetic analysis. Ameghiniana 56:127.CrossRefGoogle Scholar
Galatius, A., Olsen, M. T., Steeman, M. E., Racicot, R. A., Bradshaw, C. D., Kyhn, L. A., and Miller, L. A.. 2018. Raising your voice: evolution of narrow-band high-frequency signals in toothed whales (Odontoceti). Biological Journal of the Linnean Society 126:213224.CrossRefGoogle Scholar
Geisler, J. H., McGowen, M. R., Yang, G., and Gatesy, J.. 2011. A supermatrix analysis of genomic, morphological, and paleontological data for crown Cetacea. BMC Evolutionary Biology 11:122.CrossRefGoogle ScholarPubMed
Godfrey, S. J., Barnes, L. G., and Lambert, O.. 2017. The Early Miocene odontocete Araeodelphis natator Kellogg, 1957 (Cetacea; Platanistidae), from the Calvert Formation of Maryland, U.S.A. Journal of Vertebrate Paleontology 37:e1278607.CrossRefGoogle Scholar
Gottfried, M. D., Bohaska, D. J., and Whitmore, F. C. Jr. 1994. Miocene cetaceans of the Chesapeake Group. Proceedings of the San Diego Society of Natural History 29:229238.Google Scholar
Gutstein, C. S., Figueroa-Bravo, C. P., Pyenson, N. D., Yury-Yañez, R. E., Cozzuol, M. A., and Canals, M.. 2014. High frequency echolocation, ear morphology, and the marine–freshwater transition: a comparative study of extant and extinct toothed whales. Palaeogeography, Palaeoclimatology, Palaeoecology 400:6274.CrossRefGoogle Scholar
Hamilton, H., Caballero, S., Collins, A. G., and Brownell, R. L. Jr. 2001. Evolution of river dolphins. Proceedings of the Royal Society of London B 268:549556.CrossRefGoogle ScholarPubMed
Hocking, D. P., Marx, F. G., Park, T., Fitzgerald, E. M., and Evans, A. R.. 2017a. A behavioural framework for the evolution of feeding in predatory aquatic mammals. Proceedings of the Royal Society of London B 284:20162750.Google Scholar
Hocking, D. P., Marx, F. G., Park, T., Fitzgerald, E. M., and Evans, A. R.. 2017b. Reply to comment by Kienle et al. 2017. Proceedings of the Royal Society of London B 284:20171836.Google Scholar
Jensen, F. H., Rocco, A., Mansur, R. M., Smith, B. D., Janik, V. M., and Madsen, P. T.. 2013. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat. PLoS ONE 8:e59284.CrossRefGoogle Scholar
Johnson, M., Hickmott, L. S., Aguilar Soto, N., and Madsen, P. T.. 2008. Echolocation behaviour adapted to prey in foraging Blainville's beaked whale (Mesoplodon densirostris). Proceedings of the Royal Society of London B 275:133139.Google Scholar
Kelkar, N., Dey, S., Deshpande, K., Choudhary, S. K., Dey, S., and Morisaka, T.. 2018. Foraging and feeding ecology of Platanista: an integrative review. Mammal Review 48:194208.CrossRefGoogle Scholar
Ketten, D. R. 1992. The marine mammal ear: specializations for aquatic audition and echolocation. Pp. 717750 in Webster, D. B., Fay, R. R., and Popper, A. N., eds. The evolutionary biology of hearing. Springer-Verlag, New York.CrossRefGoogle Scholar
Ketten, D. R. 1997. Structure and function in whale ears. Bioacoustics 8:103135.CrossRefGoogle Scholar
Ketten, D. R. 2000. Cetacean ears. Pp. 43108 in Au, W. W. L., Popper, A. N., and Fay, R. R., eds. Hearing by whales and dolphins. Springer-Verlag, New York.CrossRefGoogle Scholar
Ketten, D. R., and Wartzok, D.. 1990. Three-dimensional reconstructions of the dolphin ear. Pp. 81105 in Thomas, J. A. and Kastelein, R. A. eds. Sensory abilities of cetaceans. Springer, Boston.CrossRefGoogle Scholar
Kimura, T., and Barnes, L. G.. 2016. New Miocene fossil Allodelphinidae (Cetacea, Odontoceti, Platanistoidea) from the North Pacific Ocean. Bulletin of the Gunma Museum of Natural History 20:158.Google Scholar
Lambert, O., Bianucci, G., and Urbina, M.. 2014. Huaridelphis raimondii, a new early Miocene Squalodelphinidae (Cetacea, Odontoceti) from the Chilcatay Formation, Peru. Journal of Vertebrate Paleontology 34:9871004.CrossRefGoogle Scholar
Lambert, O., de Muizon, C., Malinverno, E., Di Celma, C., Urbina, M., and Bianucci, G.. 2018. A new odontocete (toothed cetacean) from the Early Miocene of Peru expands the morphological disparity of extinct heterodont dolphins. Journal of Systematic Palaeontology 16:9811016.CrossRefGoogle Scholar
Luo, Z., and Eastman, E. R.. 1995. Petrosal and inner ear of a squalodontoid whale: implications for evolution of hearing in odontocetes. Journal of Vertebrate Paleontology 15:431442.CrossRefGoogle Scholar
Luo, Z., and Marsh, K.. 1996. Petrosal (periotic) and inner ear of a Pliocene kogiine whale (Kogiinae, Odontoceti): implications on relationships and hearing evolution of toothed whales. Journal of Vertebrate Paleontology 16:328348.CrossRefGoogle Scholar
Madsen, P. T., Kerr, I., and Payne, R.. 2004. Echolocation clicks of two free-ranging, oceanic delphinids with different food preferences: false killer whales Pseudorca crassidens and Risso's dolphins Grampus griseus. Journal of Experimental Biology 207:18111823.CrossRefGoogle ScholarPubMed
Manoussaki, D., Chadwick, R. S., Ketten, D. R., Arruda, J., Dimitriadis, E. K., and O'Malley, J. T.. 2008. The influence of cochlear shape on low-frequency hearing. Proceedings of the National Academy of Sciences USA 105:61626166.CrossRefGoogle ScholarPubMed
March, D., Brown, D., Gray, R., Curthoys, I., Wong, C., and Higgins, D. P.. 2016. Auditory anatomy of beaked whales and other odontocetes: potential for cochlear stimulation via a “vibroacoustic duct mechanism.” Marine Mammal Science 32:552567.CrossRefGoogle Scholar
Martins, M. C. I., Park, T., Racicot, R., and Cooper, N.. 2020. Intraspecific variation in the cochleae of harbour porpoises (Phocoena phocoena) and its implications for comparative studies across odontocetes. PeerJ 8:e8916.CrossRefGoogle ScholarPubMed
Marx, F. G., Lambert, O., and Uhen, M. D.. 2016. Cetacean paleobiology. Wiley, Chichester, U.K.CrossRefGoogle Scholar
Marx, F. G., Park, T., Fitzgerald, E. M. G., and Evans, A. R.. 2018. A Miocene pygmy right whale fossil from Australia. PeerJ 6:e5025.CrossRefGoogle ScholarPubMed
McCurry, M. R., and Pyenson, N. D.. 2018. Hyper-longirostry and kinematic disparity in extinct toothed whales. Paleobiology 45:2129.CrossRefGoogle Scholar
Meloro, C., and Jones, M. E. H.. 2012. Tooth and cranial disparity in the fossil relatives of Sphenodon (Rhynchocephalia) dispute the persistent “living fossil” label. Journal of Evolutionary Biology 25:21942209.CrossRefGoogle ScholarPubMed
Moreno, F. P. 1892. Lijeros apuntes sobre dos géneros de cetáceos fósiles de la República Argentina. Revista del Museo Argentino de Ciencias Naturales 3:393400.Google Scholar
Mourlam, M. J., and Orliac, M. J.. 2017. Infrasonic and ultrasonic hearing evolved after the emergence of modern whales. Current Biology 27:17761781.CrossRefGoogle ScholarPubMed
Nikaido, M., Matsuno, F., Hamilton, H., Brownell, R. L. Jr., Cao, Y., Ding, W., Zuoyan, Z., Shedlock, A. M., Fordyce, R. E., Hasegawa, M., and Okada, N.. 2001. Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proceedings of the National Academy of Sciences USA 98:73847389.CrossRefGoogle ScholarPubMed
Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., and Kumar, K.. 2004. Eocene evolution of whale hearing. Nature 430:776778.CrossRefGoogle ScholarPubMed
Nummela, S., Thewissen, J. G. M., Bajpai, S., Hussain, S. T., and Kumar, K.. 2007. Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing. Anatomical Record 290:716733.CrossRefGoogle ScholarPubMed
Oelschläger, H. A. 1986. Comparative morphology and evolution of the otic region in toothed whales (Cetacea, Mammalia). American Journal of Anatomy 177:353368.CrossRefGoogle Scholar
Page, C. E., and Cooper, N.. 2017. Morphological convergence in “river dolphin” skulls. PeerJ 5:e4090.CrossRefGoogle Scholar
Paleobiology Database. 2020. Fossilworks. http://www.pbdb.org, accessed 5 October 2020.Google Scholar
Park, T., Fitzgerald, E. M. G., and Evans, A. R.. 2016. Ultrasonic hearing in the earliest toothed whales. Biology Letters 12:20160060.CrossRefGoogle ScholarPubMed
Park, T., Evans, A. R., Gallagher, S. J., and Fitzgerald, E. M. G.. 2017a. Low-frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales. Proceedings of the Royal Society of London B 284:20162528.Google Scholar
Park, T., Fitzgerald, E. M. G., and Evans, A. R.. 2017b. The tympanal recess of the cetacean cochlea: function and evolution. Acoustics Australia 45:273278.CrossRefGoogle Scholar
Park, T., Marx, F. G., Fitzgerald, E. M. G., and Evans, A. R.. 2017c. The cochlea of the enigmatic pygmy right whale Caperea marginata informs mysticete phylogeny. Journal of Morphology 278:801809.CrossRefGoogle Scholar
Park, T., Mennecart, B., Costeur, L., Grohé, C., and Cooper, N.. 2018. Dataset: convergent evolution in toothed whale cochleae. Natural History Museum Data Portal. doi: 10.5519/0082968.Google Scholar
Park, T., Mennecart, B., Costeur, L., Grohé, C., and Cooper, N.. 2019. Convergent evolution in toothed whale cochleae. BMC Evolutionary Biology 19:195.CrossRefGoogle ScholarPubMed
Pihlström, H. 2008. Comparative anatomy and physiology of chemical senses in aquatic mammals. Pp. 95109 in Thewissen, J. G. M., and Nummela, S., eds. Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley.Google Scholar
Pilleri, G., Gihr, M., Purves, P. E., Zbinden, Z., and Kraus, C.. 1976. On the behaviour, bioacoustics and functional morphology of the Indus River dolphin (Platanista indi Blyth, 1859). Investigations on Cetacea 6:11141.Google Scholar
Purves, P. E., and Pilleri, G.. 1973. Observations on the ear, nose, throat and eye of Platanista indi. Investigations on Cetacea 5:1357.Google Scholar
Racicot, R. A., Boessenecker, R. W., Darroch, S. A. F., and Geisler, J. H.. 2019. Evidence for convergent evolution of ultrasonic hearing in toothed whales (Cetacea: Odontoceti). Biology Letters 15:20190083.CrossRefGoogle Scholar
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Google Scholar
Ritsche, I. S., Fahlke, J. M., Wieder, F., Hilger, A., Manke, I., and Hampe, O.. 2018. Relationships of cochlear coiling shape and hearing frequencies in cetaceans, and the occurrence of infrasonic hearing in Miocene Mysticeti. Fossil Record 21:3345.CrossRefGoogle Scholar
Rommel, S. A., and Reynolds, J. E. III. 2018. Skeleton. Pp. 861871 in Würsig, B., Thewissen, J. G. M., and Kovacs, K., eds. Encyclopedia of marine mammals, 3rd ed. Academic Press, London.CrossRefGoogle Scholar
Salesa, M. J., Peigné, S., Antón, M., and Morales, J.. 2011. Evolution of the family Ailuridae: origins and Old-World fossil record. Pp. 2741 in Glatston, A. R., ed. Red panda: biology and conservation of the first panda. William Andrew Publishing, London.CrossRefGoogle Scholar
Schlager, S. 2017. Morpho and Rvcg–shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. Pp. 217256 in Zheng, G., Li, S., and Szekely, G., eds. Statistical shape and deformation analysis. Academic Press, London.CrossRefGoogle Scholar
Spoor, F., Bajpai, S., Hussain, S. T., Kumar, K., and Thewissen, J. G. M.. 2002. Vestibular evidence for the evolution of aquatic behaviour in early cetaceans. Nature 417:163166.CrossRefGoogle ScholarPubMed
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. Y., Rabosky, D. L., and Nielsen, R.. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.CrossRefGoogle ScholarPubMed
Tanaka, Y., and Fordyce, R. E.. 2015. A new Oligo-Miocene dolphin from New Zealand Otekaikea huata expands diversity of the early Platanistoidea. Palaeontologia Electronica 18.2.23A:171.Google Scholar
Tanaka, Y., and Fordyce, R. E.. 2017. Awamokoa tokarahi, a new basal dolphin in the Platanistoidea (late Oligocene, New Zealand). Journal of Systematic Palaeontology 15:365386.CrossRefGoogle Scholar
Thean, T., Kardjilov, N., and Asher, R. J.. 2017. Inner ear development in cetaceans. Journal of Anatomy 230:249261.CrossRefGoogle ScholarPubMed
Thornton, S. W., McLellan, W. A., Rommel, S. A., Dillaman, R. M., Nowacek, D. P., Koopman, H. N., and Pabst, A. D.. 2015. Morphology of the nasal apparatus in pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales. Anatomical Record 298:13011326.CrossRefGoogle ScholarPubMed
Viglino, M. 2019. Sistemática, filogenia y paleoecología de Notocetus vanbenedeni del Mioceno temprano de Patagonia y la evolución de los Platanistoidea (Mammalia, Cetacea, Odontoceti). Ph.D. thesis (unpublished). Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires.Google Scholar
Viglino, M., Buono, M. R., Fordyce, R. E., Cuitiño, J. I., and Fitzgerald, E. M. G.. 2018a. Anatomy and phylogeny of the large shark-toothed dolphin Phoberodon arctirostris Cabrera, 1926 (Cetacea: Odontoceti) from the early Miocene of Patagonia (Argentina). Zoological Journal of the Linnean Society 185:511542.CrossRefGoogle Scholar
Viglino, M., Buono, M. R., Gutstein, C. S., Cozzuol, M. A., and Cuitiño, J. I.. 2018b. A new dolphin from the early Miocene of Patagonia (Argentina): insights into the evolution of Platanistoidea in the Southern Hemisphere. Acta Palaeontologica Polonica 63:261277.CrossRefGoogle Scholar
Viglino, M., Gaetán, C. M., Cuitiño, J. I., and Buono, M. R.. 2020. First toothless platanistoid from the early Miocene of Patagonia: the golden age of diversification of the Odontoceti. Journal of Mammalian Evolution. doi: 10.1007/s10914-020-09505-w.Google Scholar
Visualization Sciences Group. 2016. Avizo: 3D analysis software for scientific and industrial data, Standard Edition. ThermoFisher Scientific. https://t.co/kzQsAoaQsz?amp=1, accessed 1 August 2019.Google Scholar
Werth, A.J. 2006. Mandibular and dental variation and the evolution of suction feeding in Odontoceti. Journal of Mammalogy 87:579588.CrossRefGoogle Scholar
Wiley. 2005. Landmark Editor 3.0. Institute for Data Analysis and Visualization, Davis, Calif.Google Scholar