Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T00:54:21.620Z Has data issue: false hasContentIssue false

Extinction and quiescence in marine animal genera

Published online by Cambridge University Press:  14 July 2015

Michael Foote*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637. E-mail: [email protected]

Abstract

If last appearances of marine animal genera are taken as reasonable proxies for true extinctions, then there is appreciable global extinction in every stage of the Phanerozoic. If, instead, backsmearing of extinctions by incomplete sampling is explicitly taken into consideration, a different view of extinction emerges, in which the pattern of extinction is much more volatile and in which quiescent time spans—with little or no global extinction for several million years—are punctuated by major extinction events that are even more extreme than is generally thought. Independent support for this alternative view comes from analysis of genus occurrence data in the Paleobiology Database, which agrees with previous estimates of sampling probability and implies that offsets between extinction and last appearance of one or more stages are quite probable.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.Google Scholar
Alroy, J. 1998. Equilibrial diversity dynamics in North American mammals. Pp. 232287 in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? II. Journal of Paleontology 57:130.Google Scholar
Bowring, S. A., and Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8:18.Google Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315 in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Connolly, S. R., and Miller, A. I. 2001a. Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited. Paleobiology 27:751767.Google Scholar
Connolly, S. R., and Miller, A. I. 2001b. Global Ordovician faunal transitions in the marine benthos: proximate causes. Paleobiology 27:779795.Google Scholar
Connolly, S. R., and Miller, A. I. 2002. Global Ordovician faunal transitions in the marine benthos: ultimate causes. Paleobiology 28:2640.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Cooper, R. A., Matcham, I., Jones, C. M., Maxwell, P. A., and Marshall, B. A. 2006a. Second-order sequence stratigraphic controls on the quality of the fossil record at an active margin: New Zealand Eocene to Recent shelf molluscs. Palaios 21:86105.CrossRefGoogle Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006b. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.CrossRefGoogle Scholar
Efron, B., and Tibshirani, R. J. 1993. An introduction to the bootstrap. Chapman and Hall, New York.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20:424444.Google Scholar
Foote, M. 2000a. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):74102.Google Scholar
Foote, M. 2000b. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26:578605.Google Scholar
Foote, M. 2001a. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.Google Scholar
Foote, M. 2001b. Estimating the completeness of the fossil record. Pp. 504507 in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology II. Blackwell Scientific, Oxford.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Ecology 111:125148.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.Google Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.Google Scholar
Foote, M., and Raup, D. M. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.Google Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.Google Scholar
Holland, S. M. 2000. The quality of the fossil record: a sequence-stratigraphic perspective. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):148168.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134146.2.0.CO;2>CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.Google Scholar
Kirchner, J. W., and Weil, A. 2000. Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177180.Google Scholar
Krug, A. Z., and Patzkowsky, M. E. 2004. Rapid recovery from the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 101:1760517610.Google Scholar
Lu, P. J., Yogo, M., and Marshall, C. R. 2006. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proceedings of the National Academy of Sciences USA 103:23762379.Google Scholar
MacLeod, N., Rawson, P. F., Forey, P. L., Banner, F. T., Bou-dagher-Fadel, M. K., Bown, P. R., Burnett, J. A., Chambers, P., Culver, S., Evans, S. E., Jeffery, C., Kaminski, M. A., Lord, A. R., Milner, A. C., Milner, A. R., Morris, N., Owen, E., Rosen, B. R., Smith, A. B., Taylor, P. D., Urquhart, E., and Young, J. R., 1997. The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, London 154:265292.Google Scholar
Marshall, C. R., and Ward, P. D. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274:13601363.Google Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecologic ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22:304309.Google Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record. Pp. 75117 in Joysey, K. A. and Friday, A. E., eds. Problems of phylogenetic reconstruction (Systematics Association Special Volume No. 21). Academic Press, London.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.CrossRefGoogle ScholarPubMed
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:367386.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Quinn, J. F. 1983. Mass extinctions in the fossil record. Science 219:12391240.Google Scholar
R Development Core Team. 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (URL http://www.R-project.org).Google Scholar
Raup, D. M. 1989. The case for extraterrestrial causes of extinction. Philosophical Transactions of the Royal Society of London B 325:421431.Google Scholar
Raup, D. M. 1991. A kill curve for Phanerozoic marine species. Paleobiology 17:3748.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr 1986. Periodic extinction of families and genera. Science 231:833836.Google Scholar
Raup, D. M., Sepkoski, J. J. Jr., and Stigler, S. M. 1983. Mass extinctions in the fossil record [reply to Quinn]. Science 219:12401241.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Sheehan, P. M. 1996. A new look at ecologic evolutionary units (EEUs). Palaeogeography, Palaeoclimatology, Palaeoecology 127:2132.Google Scholar
Signor, P. W. III, and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geological Society of America Special Paper 190:291296.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:117.Google Scholar
Smith, A. B., Gale, A. S., and Monks, N. E. A. 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.Google Scholar
Stigler, S. M. 1987. Testing hypotheses or fitting models? Another look at mass extinctions. Pp. 147159 in Nitecki, M. H. and Hoffman, A., eds. Neutral models in biology. Oxford University Press, New York.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307:5052.Google Scholar
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology 29:455467.Google Scholar