Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:22:23.504Z Has data issue: false hasContentIssue false

Evolutionary rates of mid-Permian tetrapods from South Africa and the role of temporal resolution in turnover reconstruction

Published online by Cambridge University Press:  08 August 2018

Michael O. Day
Affiliation:
Evolutionary Studies Institute and School of Geoscience, University of the Witwatersrand, Johannesburg 2050, South Africa. E-mail: [email protected], [email protected].
Roger B. J. Benson
Affiliation:
Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom. E-mail: [email protected]
Christian F. Kammerer
Affiliation:
Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany. E-mail: [email protected].
Bruce S. Rubidge
Affiliation:
Evolutionary Studies Institute and School of Geoscience, University of the Witwatersrand, Johannesburg 2050, South Africa. E-mail: [email protected], [email protected].

Abstract

The Main Karoo Basin of South Africa contains a near-continuous sequence of continental deposition spanning ~80 Myr from the mid-Permian to the Early Jurassic. The terrestrial vertebrates of this sequence provide a high-resolution stratigraphic record of regional origination and extinction, especially for the mid–late Permian. Until now, data have only been surveyed at coarse stratigraphic resolution using methods that are biased by nonuniform sampling rates, limiting our understanding of the dynamics of diversification through this important time period. Here, we apply robust methods (gap-filler and modified gap-filler rates) for the inference of patterns of species richness, origination rates, and extinction rates to a subset of 1321 reliably-identified fossil occurrences resolved to approximately 50 m stratigraphic intervals. This data set provides an approximate time resolution of 0.3–0.6 Myr and shows that extinction rates increased considerably in the upper 100 m of the mid-Permian Abrahamskraal Formation, corresponding to the latest part of the Tapinocephalus Assemblage Zone (AZ). Origination rates were only weakly elevated in the same interval and were not sufficient to compensate for these extinctions. Subsampled species richness estimates for the lower part of the overlying Teekloof Formation (corresponding to the Pristerognathus and Tropidostoma AZs) are low, showing that species richness remained low for at least 1.5–3 million years after the main extinction pulse. A high unevenness of the taxon abundance–frequency distribution, which is classically associated with trophically unstable postextinction faunas, in fact developed shortly before the acme of elevated extinction rates due to the appearance and proliferation of the dicynodont Diictodon. Our findings provide strong support for a Capitanian (“end-Guadalupian”) extinction event among terrestrial vertebrates and suggest that further high-resolution quantitative studies may help resolve the lack of consensus among paleobiologists regarding this event.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.

*

Present address: North Carolina Museum of Natural Sciences, Raleigh, North Carolina 27601-1029, U.S.A.

References

Literature Cited

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.Google Scholar
Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.Google Scholar
Alroy, J. 2009. Speciation and extinction in the fossil record of North American mammals. Pp. 301323. in R. Butlin, J. Bridle, and D. Schluter, eds. Speciation and patterns of diversity. Cambridge University Press, Cambridge.Google Scholar
Alroy, J. 2010a. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. In J. Alroy, and G. Hunt, eds. Quantitative methods in paleobiology (Paleontological Society Papers 16 5580.Google Scholar
Alroy, J. 2010b. Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:12111235.Google Scholar
Alroy, J. 2010c. The shifting balance of diversity among major marine animal groups. Science 329:11911194.Google Scholar
Alroy, J. 2014. Accurate and precise estimates of origination and extinction rates. Paleobiology 40:374397.Google Scholar
Alroy, J. 2015. A more precise speciation and extinction rate estimator. Paleobiology 41:633639.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J., Sommers, M. G., Wagner, P. J., and Webber, A.. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C.. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Arefiev, M. P., Golubev, V. K., Karasev, E. V., Zhokina-Naumcheva, M. A., Balabanov, Y. P., Minikh, A. V., Minikh, M. G., Molostovskaya, I. I., and Yaroshenko, O.P.. 2015. Type and reference sections of the Permian–Triassic continental sequences of the Eastern European Platform: main isotope, magnetic, and biotic events. P. 103 in Field Guide for XVIII International Congress on the Carboniferous and Permian. Sukhona and Severnaya Dvina Rivers field trip. Kazan, Russia.Google Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C.. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.Google Scholar
Benson, R. B. J., and Upchurch, P.. 2013. Diversity trends in the establishment of terrestrial vertebrate ecosystems: interactions between spatial and temporal sampling biases. Geology 41:4346.Google Scholar
Benson, R. B. J., Butler, R. J., Alroy, J., Mannion, P. D., Carrano, M. T., and Lloyd, G. T.. 2016. Near-stasis in the long-term diversification of Mesozoic tetrapods. PLOS Biology 14:e1002359.Google Scholar
Benton, M. J. 1985. Mass extinction among non-marine tetrapods. Nature 316:811814.Google Scholar
Benton, M. J., Tverdokhlebov, V. P., and Surkov, M. V.. 2004. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432:97100.Google Scholar
Benton, M. J., Ruta, M., Dunhill, A. M., and Sakamoto, M.. 2013. The first half of tetrapod evolution, sampling proxies, and fossil record quality. Palaeogeography, Palaeoclimatology, Palaeoecology 372:1841.Google Scholar
Bond, D. P. G., and Grasby, S. E.. 2017. Editorial: Mass extinction causality. Palaeogeography, Palaeoclimatology, Palaeoecology 478:12.Google Scholar
Bond, D. P. G., and Wignall, P. B.. 2014. Large igneous provinces and mass extinctions: an update. Geological Society of America Special Papers 505:29–56.Google Scholar
Bond, D. P. G., Hilton, J., Wignall, P. B., Ali, J. R., Stevens, L. G., Sun, Y., and Lai, X.. 2010. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews 102:100116.Google Scholar
Bond, D. P. G., Wignall, P. B., Joachimski, M. M., Sun, Y., Savov, I., Grasby, S. E., Beauchamp, B., and Blomeier, D. P. G.. 2015. An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification. GSA Bulletin 127:14111421.Google Scholar
Botha, J., and Smith, R. M. H.. 2006. Rapid vertebrate recuperation in the Karoo Basin of South Africa following the End-Permian extinction. Journal of African Earth Sciences 45:502514.Google Scholar
Brocklehurst, N., Ruta, M., Müller, J., and Fröbisch, J.. 2015. Elevated extinction rates as a trigger for diversification rate shifts: early amniotes as a case study. Scientific Reports 5:ar17104.Google Scholar
Catuneanu, O., Hancox, P. J., and Rubidge, B. S.. 1998. Reciprocal flexural behaviour and contrasting stratigraphies: a new basin development model for the Karoo retroarc foreland system, South Africa. Basin Research 10:417439.Google Scholar
Clapham, M. E., Shen, S., and Bottjer, D. J.. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:3250.Google Scholar
Close, R. A., Benson, R. B. J., Upchurch, P., and Butler, R. J.. 2017. Controlling for the species–area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification. Nature. Communications 8:15381.Google Scholar
Close, R. A., Evers, S. W., Alroy, J., and Butler, R. J.. 2018. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods in Ecology and Evolution. doi: 10.1111/2041-210X.12.Google Scholar
Cole, D. I., and Wipplinger, P. E.. 2001. Sedimentology and molybdenum potential of the Beaufort Group in the main Karoo basin, South Africa. Memoirs of the Council for Geoscience 80:1225.Google Scholar
Day, M. O. 2013. Middle Permian continental biodiversity changes as reflected in the Beaufort Group of South Africa: a bio- and lithostratigraphic review of the eodicynodon, tapinocephalus and pristerognathus Assemblage Zones. Unpublished Ph.D. thesis. University of the Witwatersrand, Johannesburg.Google Scholar
Day, M. O., and Rubidge, B. S.. 2014. A brief lithostratigraphic review of the Abrahamskraal and Koonap formations of the Beaufort Group, South Africa: towards a basin–wide stratigraphic scheme for the Middle Permian Karoo. Journal of African Earth Sciences 100:227242.Google Scholar
Day, M. O., Güven, S., Abdala, F., Jirah, S., Rubidge, B., and Almond, J.. 2015a. Youngest dinocephalian fossils extend the Tapinocephalus Zone, Karoo Basin, South Africa. South African Journal of Science 111(3–4), 15.Google Scholar
Day, M. O., Ramezani, J., Bowring, S. A., Sadler, P. M., Erwin, D. H., Abdala, F., and Rubidge, B. S.. 2015b. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa. Proceedings of the Royal Society of London B 282(1811) 20150834.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25(Suppl. 2) 115.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:74102.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.Google Scholar
Foote, M., and Sepkoski, J. J.. 1999. Absolute measures of the completeness of the fossil record. Nature 398:415417.Google Scholar
Fröbisch, J. 2013. Vertebrate diversity across the end-Permian mass extinction—separating biological and geological signals. Palaeogeography Palaeolimatology Palaeoecology 372:5061.Google Scholar
Fröbisch, J. 2014. Synapsid diversity and the rock record in the Permian–Triassic Beaufort Group (Karoo Supergroup), South Africa. Pp. 305319. in C. Kammerer, K. Angielczyk, and J. Fröbisch, eds. Early evolutionary history of the Synapsida. Springer, Dordrecht, Netherlands.Google Scholar
Glazier, D. S. 1987. Toward a predictive theory of speciation: the ecology of isolate selection. Journal of Theoretical Biology 126:323333.Google Scholar
Golubev, V. K. 2000. The faunal assemblages of Permian terrestrial vertebrates from Eastern Europe. Paleontological Journal 34(Suppl. 2), S211S224.Google Scholar
Hannisdal, B., and Peters, S. E.. 2011. Phanerozoic Earth system evolution and marine biodiversity. Science 334:11211124.Google Scholar
Harnik, P. G., Simpson, C., and Payne, J. L.. 2012. Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society of London B 279:49694976.Google Scholar
Huang, H., Cawood, P. A., Hou, M.-C., Yang, J.-H., Ni, S.-J., Du, Y.-S., Yan, Z.-K., and Wang, J.. 2016. Silicic ash beds bracket Emeishan Large Igneous province to <1m.y. at ~260Ma. Lithos 264:1727.Google Scholar
Irmis, R. B., and Whiteside, J. H.. 2011. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle. Proceedings of the Royal Society of London B. doi: 10.1098/rspb.2011.1895.Google Scholar
Jablonski, D. 2002. Survival without recovery after mass extinctions. Proceedings of the National Academy of Sciences USA 99:81398144.Google Scholar
Jablonski, D. 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105(Suppl. 1), 1152811535.Google Scholar
Jin, Y., Shen, S., Henderson, C. M., Wang, X., Wang, W., Wang, Y., Cao, C., and Shang, Q.. 2006. The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian). Episodes 29:253.Google Scholar
Johnson, C. 1998. Species extinction and the relationship between distribution and abundance. Nature 394:272.Google Scholar
Kiessling, W., and Simpson, C.. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology 17:5667.Google Scholar
Lanci, L., Tohver, E., Wilson, A., and Flint, S.. 2013. Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth and Planetary Science Letters 375:123134.Google Scholar
Leonova, T. B. 2009. Ammonoid evolution in marine ecosystems prior to the Permian–Triassic crisis. Paleontological Journal 43:858.Google Scholar
Longrich, N. R., Scriberas, J., and Wills, M. A.. 2016. Severe extinction and rapid recovery of mammals across the Cretaceous–Palaeogene boundary, and the effects of rarity on patterns of extinction and recovery. Journal of Evolutionary Biology 29:14951512.Google Scholar
Lucas, S. G. 1998. Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeography, Palaeoclimatology, Palaeoecology 143:347384.Google Scholar
Lucas, S. G. 2009. Timing and magnitude of tetrapod extinctions across the Permo–Triassic boundary. Journal of Asian Earth Sciences 36:491502.Google Scholar
Mayhew, P. J., Bell, M. A., Benton, T. G., and McGowan, A. J.. 2012. Biodiversity tracks temperature over time. Proceedings of the National Academy of Sciences USA 109:1514115145.Google Scholar
Maxwell, W. D. 1992. Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology 35:571583.Google Scholar
McGhee, G. R. Jr., Clapham, M. E., Sheehan, P. M., Bottjer, D. J., and Droser, M. L.. 2013. A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology 370:260270.Google Scholar
McKinney, M. L. 1997a. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.Google Scholar
McKinney, M. L. 1997b. How do rare species avoid extinction? A paleontological view. Pp. 110129. in W. E. Kunin, and K. J. Gaston, eds. The biology of rarity. Chapman & Hall, London.Google Scholar
Modesto, S. P., Damiani, R. J., Neveling, J., and Yates, A. M.. 2003. A new Triassic owenettid parareptile and the mother of mass extinctions. Journal of Vertebrate Paleontology 23:715719.Google Scholar
Nicolas, M. V. 2007. Tetrapod biodiversity through the Permo-Triassic Beaufort Group (Karoo Supergroup) of South Africa. Unpublished Ph.D. thesis. University of the Witwatersrand, Johannesburg, South Africa. http://146.141.12.21/handle/10539/5391.Google Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118. in M. J. Novacek, and Q. D. Wheeler, eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Paiva, F. 2016. Fluvial facies architecture and provenance history of the Abrahamskraal–Teekloof Formation transition (Lower Beaufort Group) in the main Karoo Basin. Unpublished M.Sc. dissertation, University of Cape Town, Cape Town, South Africa. https://open.uct.ac.za/handle/11427/20615?show=full.Google Scholar
Payne, J. L., and Clapham, M. E.. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40:89111.Google Scholar
Quental, T. B., and Marshall, C. R.. 2013. How the Red Queen drives terrestrial mammals to extinction. Science 341:290292.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.Google Scholar
Raup, D. M. 1988. Diversity crises in the geological past. Pp. 5157. in E. O. Wilson, and F. M. Peter, eds. Biodiversity. National Academies Press, Washington, D.C. Google Scholar
Raup, D. M., and Sepkoski, J. J.. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Reisz, R. R., and Modesto, S. P.. 2007. Heleosaurus scholtzi from the Permian of South Africa: a varanopid synapsid, not a diapsid reptile. Journal of Vertebrate Paleontology 27:734739.Google Scholar
Retallack, G. J., Metzger, C. A., Greaver, T., Jahren, A. H., Smith, R. M. H., and Sheldon, N. D.. 2006. Middle–Late Permian mass extinction on land. Geological Society of America Bulletin 118:13981411.Google Scholar
Rubidge, B. 1995a. Biostratigraphy of the Eodicynodon Assemblage Zone. Pp. 37. in B. S. Rubidge, ed. Biostratigraphy of the Beaufort Group (Karoo Supergroup). Council for Geoscience, Pretoria.Google Scholar
Rubidge, B. S. ed. 1995b. Biostratigraphy of the Beaufort Group (Karoo Supergroup). Council for Geoscience, Pretoria.Google Scholar
Rubidge, B. S., and Hopson, J. A.. 1996. A primitive anomodont therapsid from the base of the Beaufort Group (Upper Permian) of South Africa. Zoological Journal of the Linnean Society 117:115139.Google Scholar
Rubidge, B. S., Modesto, S. P., and Sidor, C. P.. 1999. Eunotosaurus africanus from the Ecca–Beaufort contact in Northern Cape Province, South Africa—implications for Karoo Basin development. South African Journal of Science 95:553555.Google Scholar
Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A., and de Klerk, W. J.. 2013. High-precision temporal calibration of Late Permian vertebrate biostratigraphy: U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41:363366.Google Scholar
Ruta, M., and Benton, M. J.. 2008. Calibrated diversity, tree topology and the mother of mass extinctions: the lesson of temnospondyls. Palaeontology 51:12611288.Google Scholar
Ruta, M., Cisneros, J. C., Liebrecht, T., Tsuji, L. A., and Müller, J.. 2011. Amniotes through major biological crises: faunal turnover among Parareptiles and the end-Permian mass extinction. Palaeontology 54:11171137.Google Scholar
Ruta, M., Angielczyk, K. D., Fröbisch, J., and Benton, M. J.. 2013. Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proceedings of the Royal Society of London B 280(1768.Google Scholar
Sadler, P. M., Kemple, W. G., and Kooser, M. A.. 2008. CONOP9 programs for solving the stratigraphic correlation and seriation problems as constrained optimization. Pp. 461462. in P. J. Harries, ed. High-resolution approaches in stratigraphic paleontology. Springer, Dordrecht, Netherlands.Google Scholar
Sepkoski, J. J. 1982. Mass extinctions in the Phanerozoic oceans: a review. Pp. 283290. in L. T. Silver, and P. H. Schultz, eds. Geological implications of impacts of large asteroids and comets on the Earth (Geological Society of America Special Papers 190.Google Scholar
Sepkoski, J. J. 1994. Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity. Acta Palaeontologica Polonica 38:175198.Google Scholar
Sepkoski, J. J. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. Pp. 3551. in O. H. Walliser, ed. Global events and event stratigraphy in the Phanerozoic: results of the international interdisciplinary cooperation in the IGCP–Project 216 “Global Biological Events in Earth History.” Springer, Berlin.Google Scholar
Sepkoski, J. J. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1560.Google Scholar
Shen, S.-Z., and Shi, G. R.. 1996. Diversity and extinction patterns of Permian Brachiopoda of South China. Historical. Biology 12:93110.Google Scholar
Shen, S.-Z., and Shi, G. R.. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian–western Pacific region. Paleobiology 28:449463.Google Scholar
Shen, S.-Z., and Shi, G. R.. 2009. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld 18:152161.Google Scholar
Silvestro, D., Salamin, N., and Schnitzler, J.. 2014. PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods in Ecology and Evolution 5:11261131.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record. Wiley-Blackwell, Oxford.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.Google Scholar
Smith, A. B., and McGowan, A. J.. 2011. The ties linking rock and fossil records and why they are important for palaeobiodiversity studies. Geological Society of London Special Publication 358:17.Google Scholar
Smith, R. M. H., and Botha, J.. 2005. The recovery of terrestrial vertebrate diversity in the South African Karoo Basin after the end-Permian extinction. Comptes Rendus Palevol 4:623636.Google Scholar
Smith, R. M. H., and Botha-Brink, J.. 2014. Anatomy of a mass extinction: sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo Basin, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 396:99118.Google Scholar
Smith, R. M. H., Rubidge, B. S., and Van der Walt, M. V. M.. 2012. Therapsid biodiversity patterns and palaeoenvirnoments of the Karoo Basin, South Africa. Pp. 3164. in A. Chinsamy-Turan, ed. Forerunners of mammals. Indiana University Press, Bloomington.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.Google Scholar
Stanley, S. M. 2016. Estimates of the magnitudes of major marine mass extinctions in earth history. Proceedings of the National Academy of Sciences USA 113:E6325E6334.Google Scholar
Stanley, S. M., and Yang, X.. 1994. A double mass extinction at the end of the Paleozoic era. Science 266:13401344.Google Scholar
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R., and Richoz, S.. 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32:805808.Google Scholar
Vrba, E. S., and DeGusta, D.. 2004. Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Philosophical Transactions of the Royal Society of London B 359:285293.Google Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S.. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:12891292.Google Scholar
Wang, X. D., and Sugiyama, T.. 2000. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33:285294.Google Scholar
Weidlich, O. 2002. Permian reefs re-examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios 35:287294.Google Scholar
Wilson, G. P. 2014. Mammalian extinction, survival, and recovery dynamics across the Cretaceous–Paleogene boundary in northeastern Montana, USA. Pp. 365392. in G. P. Wilson, W. A. Clemens, J. R. Horner, and J. H. Hartman, eds. Through the end of the Cretaceous in the type locality of the Hell Creek Formation in Montana and adjacent areas. Geological Society of America, Boulder, Colo.Google Scholar
Supplementary material: File

Day et al. supplementary material

Day et al. supplementary material 1

Download Day et al. supplementary material(File)
File 374.5 KB