Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:36:33.075Z Has data issue: false hasContentIssue false

Environmental determinants of marine benthic biodiversity dynamics through Triassic-Jurassic time

Published online by Cambridge University Press:  20 May 2016

Wolfgang Kiessling
Affiliation:
Museum für Naturkunde, Humboldt-Universität, Invalidenstrasse 43, D-10115 Berlin, Germany. E-mail: [email protected]
Martin Aberhan
Affiliation:
Museum für Naturkunde, Humboldt-Universität, Invalidenstrasse 43, D-10115 Berlin, Germany. E-mail: [email protected]

Abstract

Ecology is thought to be of crucial importance in determining taxonomic turnover at geological time scales, yet general links between ecology and biodiversity dynamics are still poorly explored in deep time. Here we analyze the relationships between the environmental affinities of Triassic–Jurassic marine benthic genera and their biodiversity dynamics, using a large, taxonomically vetted data set of Triassic–Jurassic taxonomic occurrences.

On the basis of binomial probabilities of proportional occurrence counts, we identify environmental affinities of genera for (1) carbonate versus siliciclastic substrates, (2) onshore versus offshore depositional environments, (3) reefs versus level-bottom communities, and (4) tropical versus non-tropical latitudinal zones. Genera with affinities for carbonates, onshore environments, and reefs have higher turnover rates than genera with affinities for siliciclastic, offshore, and level-bottom settings. Differences in faunal turnover are largely due to differences in origination rates. Whereas previous studies have highlighted the direct influence of physical and biological factors in exploring environmental controls on evolutionary rates, our analyses show that the patterns can largely be explained by the partitioning of higher taxa with different evolutionary tempos among environments. The relatively slowly evolving bivalves are concentrated in siliciclastic rocks and in level-bottom communities. Furthermore, separate analyses on bivalves did not produce significant differences in turnover rates between environmental settings. The relationship between biodiversity dynamics and environments in our data set is thus governed by the partitioning of higher taxa within environmental categories and not directly due to greater chances of origination in particular settings. As this partitioning probably has ecological reasons rather than being a simple sampling artifact, we propose an indirect environmental control on evolutionary rates.

Affinities for latitudinal zones are not linked to systematically different turnover rates, possibly because of paleoclimatic fluctuations and latitudinal migrations of taxa. However, the strong extinction spike of tropical genera in the Rhaetian calls for an important paleoclimatic component in the end-Triassic mass extinction.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., Kiessling, W., and Fürsich, F. T. 2006. Testing the role of biological interactions for the evolution in mid-Mesozoic marine benthic ecosystems. Paleobiology 32: 259277.Google Scholar
Allen, A. P., Gillooly, J. F., Savages, V. M., and Brown, J. H. 2006. Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences USA 103: 91309135.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98: 62616266.Google Scholar
Balog, A., Read, J. F., and Haas, J. 1999. Climate-controlled early dolomite, Late Triassic cyclic platform carbonates, Hungary. Journal of Sedimentary Research 69: 267282.Google Scholar
Bambach, R. K. 1993. Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem. Paleobiology 19: 372397.Google Scholar
Bottjer, D. J. and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3: 540560.Google Scholar
Briggs, J. C. 2005. The marine East Indies: diversity and speciation. Journal of Biogeography 32: 15171522.Google Scholar
Cardillo, M., Orme, C. D L., and Owens, I. P F. 2005. Testing for latitudinal bias in diversification rates: an example using New World birds. Ecology 86: 22782287.Google Scholar
Clapham, M. E., Bottjer, D. J., Powers, C. M., Bonuso, N., Fraiser, M. L., Marenco, P. J., Dornbos, S. Q., and Pruss, S. B. 2006. Assessing the ecological dominance of Phanerozoic marine invertebrates. Palaios 21: 431441.Google Scholar
Collins, L. S., Budd, A. F., and Coates, A. G. 1996. Earliest evolution associated with closure of the Tropical American Seaway. Proceedings of the National Academy of Sciences USA 93: 60696072.Google Scholar
Dagys, A. S. and Dagys, A. A. 1994. Global correlation of the terminal Triassic. Mémoires de Géologie (Lausanne) 22: 2534.Google Scholar
Davies, T. J., Savolainen, V., Chase, M. W., Moat, J., and Barraclough, T. G. 2004. Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society of London B 271: 21952200.Google Scholar
Dromart, G., Garcia, J-P., Picard, S., Atrops, F., Lécuyer, C., and Sheppard, S. M F. 2003. Ice age at the Middle-Late Jurassic transition? Earth and Planetary Science Letters 213: 205220.Google Scholar
Eliuk, L. S. 1998. Big bivalves, algae and the nutrient poisoning of reefs: a tabulation with examples from the Devonian and Jurassic of Canada. pp. 157184in Johnston, P. A. and Haggart, J. W., eds. Bivalves, an eon of evolution. University of Calgary Press, Calgary.Google Scholar
Evans, K. L. and Gaston, K. J. 2005. Can the evolutionary-rates hypothesis explain species-energy relationships? Functional Ecology 19: 899915.Google Scholar
Fernandez, M. H. and Vrba, E. S. 2005. Macroevolutionary processes and biomic specialization: testing the resource-use hypothesis. Evolutionary Ecology 19: 199219.Google Scholar
Flügel, E. and Kiessling, W. 2002. Patterns of Phanerozoic reef crises. In Kiessling, W., Flügel, E., and Golonka, J., eds. Phanerozoic reef patterns. SEPM Special Publication 72: 691733. Tulsa, Okla.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26: 578605.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111: 125148.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31: 620.Google Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32: 345366.Google Scholar
Frakes, L. A., Francis, J. E., and Syktus, J. I. 1992. Climate modes of the Phanerozoic: the history of the earth's climate over the past 600 million years. Cambridge University Press, Cambridge.Google Scholar
Galli, M. T., Jadoul, F., Bernasconi, S. M., and Weissert, H. 2005. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology 216: 203214.Google Scholar
Gröcke, D. R., Price, G. D., Ruffell, A. H., Mutterlose, J., and Baraboshkin, E. 2003. Isotopic evidence for Late Jurassic-Early Cretaceous climate change. Palaeogeography, Palaeoclimatology, Palaeoecology 202: 97118.Google Scholar
Hallock, P. and Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1: 389398.Google Scholar
Hoffmann, A. A. and Hercus, M. J. 2000. Environmental stress as an evolutionary force. BioScience 50: 217226.Google Scholar
Holman, E. W. 1989. Some evolutionary correlates of higher taxa. Paleobiology 15: 357363.Google Scholar
Jablonski, D. 1993. The tropics as a source of evolutionary novelty through geological time. Nature 364: 142144.Google Scholar
Jablonski, D. 2005. Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution 304: 504519.Google Scholar
Jablonski, D. and Bottjer, D. J. 1991. Environmental pattern in the origins of higher taxa: the post-Paleozoic fossil record. Science 252: 18311833.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314: 102106.Google Scholar
Jablonski, D., Sepkoski, J. J. Jr., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222: 11231125.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology 25: 219222.Google Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1998. Evolutionary significance of differential species longevity in Osagean-Meramecian (Mississippian) crinoid clades. Paleobiology 24: 155176.Google Scholar
Kiessling, W. and Aberhan, M. 2007. Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography (in press) DOI: 10.1111/j.1365-2699.2007.01709.x.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 1999. Paleoreef maps: evaluation of a comprehensive database on Phanerozoic reefs. AAPG Bulletin 83: 15521587.Google Scholar
Kiessling, W., Flügel, E., and Golonka, J. 2003. Patterns of Phanerozoic carbonate platform sedimentation. Lethaia 36: 195225.Google Scholar
Kiessling, W., Aberhan, M., Brenneis, B., and Wagner, P. J. 2007. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 244: 201222.Google Scholar
Kohn, A. J. 1997. Why are coral reef communities so diverse? Pp. 201215in Ormond, R. F. G., Gage, J. D., and Angel, M. V., eds. Marine biodiversity: patterns and processes. Cambridge University Press, Cambridge.Google Scholar
Kowalewski, M., Simoes, M. G., Carroll, M., and Rodland, D. L. 2002. Abundant brachiopods on a tropical, upwelling-influenced shelf (Southeast Brazilian Bight, South Atlantic). Palaios 17: 277286.Google Scholar
Leighton, L. R. 1999. Possible latitudinal predation gradient in middle Paleozoic oceans. Geology 27: 4750.Google Scholar
Marzoli, A., Bertrand, H., Knight, K. B., Cirilli, S., Buratti, N., Vérati, C., Nomade, S., Renne, P. R., Youbi, N., Martini, R., Allenbach, K., Neuwerth, R., Rapaille, C., Zaninetti, L., and Bellieni, G. 2004. Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32: 973976.Google Scholar
Miller, A. I. and Connolly, S. R. 2001. Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology 27: 768778.Google Scholar
Muscatine, L. and Porter, J. W. 1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environment. Bioscience 27: 454460.Google Scholar
Nevo, E. 2001. Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences USA 98: 62336240.Google Scholar
Pálfy, J. 2003. Volcanism of the Central Atlantic Magmatic Province as a potential driving force in the end-Triassic extinction. pp. 255267in Hames, W. E., McHone, J. G., Renne, P. R., and Ruppel, C., eds. The Central Atlantic Magmatic Province: insights from fragments of Pangea. American Geophysical Union, Washington, D.C.Google Scholar
Parsons, P. A. 1993. Stress, extinctions and evolutionary change: from living organisms to fossils. Biological Reviews of the Cambridge Philosophical Society 68: 313333.Google Scholar
Parsons, P. A. 1994. Habitats, stress, and evolutionary rates. Journal of Evolutionary Biology 7: 387397.Google Scholar
Parsons, P. A. 2005. Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biological Reviews 80: 589610.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102: 1232612331.Google Scholar
Price, G. D. and Sellwood, B. W. 1994. Palaeotemperatures indicated by Upper Jurassic (Kimmerdigian-Tithonien) fossils from Mallorca determinded by oxygen istope composition. Palaeogeography, Palaeoclimatology, Palaeoecology 110: 110.Google Scholar
Raup, D. M. and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14: 109125.Google Scholar
Raup, D. M. and Marshall, L. G. 1980. Variation between groups in evolutionary rates—a statistical test of significance. Paleobiology 6: 923.Google Scholar
Rees, P. M., Noto, C. R., Parrish, J. M., and Parrish, J. T. 2004. Late Jurassic climates, vegetation, and dinosaur distributions. Journal of Geology 112: 643653.Google Scholar
Reinhardt, K., Kohler, G., Maas, S., and Detzel, P. 2005. Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28: 593602.Google Scholar
Rhodes, M. C. and Thayer, C. W. 1991. Mass extinctions: ecological selectivity and primary production. Geology 19: 877880.Google Scholar
Riding, R. 1993. Phanerozoic patterns of marine CaCO3 precipitation. Naturwissenschaften 80: 513516.Google Scholar
Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65: 514527.Google Scholar
Rosales, I., Quesada, S., and Robles, S. 2004. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 203: 253275.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95: 36993702.Google Scholar
Scotese, C. R. 2001. Digital Paleogeographic Map Archive on CD-ROM,. PALEOMAP Project, Arlington, Texas.Google Scholar
Sellwood, B. W. and Valdes, P. J. 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology 190: 269287.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363: 1563.Google Scholar
Sey, I. I. and Kalacheva, E. D. 1999. Lower Berriasian of Southern Primorye (Far East Russia) and the problem of Boreal-Tethyan correlation. Palaeogeography, Palaeoclimatology, Palaeoecology 150: 4963.Google Scholar
Sheldon, P. R. 1996. Plus ça change—a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology 127: 209227.Google Scholar
Simms, M. J. and Ruffell, A. H. 1990. Climatic and biotic change in the late Triassic. Journal of the Geological Society, London 147: 321327.Google Scholar
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.Google Scholar
Tainaka, K., Itoh, Y., Yoshimura, J., and Asami, T. 2006. A geographical model of high species diversity. Population Ecology 48: 113119.Google Scholar
Thayer, C. W. 1981. Ecology of living brachiopods. In Dutro, J. T. and Boardman, R. S., eds. Lophophorates. Studies in Geology 5: 110126. University of Tennessee, Knoxville.Google Scholar
Thayer, C. W. 1986. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates. Paleobiology 12: 161174.Google Scholar
Tomašových, A. 2006. Brachiopod and bivalve ecology in the Late Triassic (Alps, Austria): onshore-offshore replacements caused by variations in sediment and nutrient supply. Palaios 21: 344368.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the Earth. Cambridge University Press, Cambridge.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1: 130.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation—an ecological history of life. Princeton University Press, Princeton, N.J.Google Scholar
Wagner, P. J., Aberhan, M., Hendy, A., and Kiessling, W. 2007. The effects of taxonomic standardization on occurrence-based estimates of diversity. Proceedings of the Royal Society of London B 274: 439444.Google Scholar
Walker, L. J., Wilkinson, B. H., and Ivany, L. C. 2002. Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings. Journal of Geology 110: 7587.Google Scholar
Ziegler, A. M., Eshel, G., Rees, P. M., Rothfus, T. A., Rowley, D. B., and Sunderlin, D. 2003. Tracing the Tropics across land and sea: Permian to present. Lethaia 36: 227254.Google Scholar