Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T01:08:39.745Z Has data issue: false hasContentIssue false

Energy, ecology, and cotton rat evolution

Published online by Cambridge University Press:  08 April 2016

Robert A. Martin*
Affiliation:
Department of Biology, Berry College, Mt. Berry, Georgia 30149

Abstract

Body mass is estimated for extinct species of Sigmodon. These data are then used in appropriate equations derived among Recent mammals to estimate a suite of physiological and ecological variables which are followed through almost 4 ma of cotton rat history. A statistical trend towards large size is documented. Despite large swings in population size and other parameters, hypothetical values of population metabolism remain virtually constant, suggesting negligible population energetic benefit to size change in either direction. Studies of extant cotton rats and unrelated taxa sharing the same adaptive zone suggest that there is now, and has been in the past, negligible thermoregulatory advantage to modification of cotton rat body mass. Large size appears to be associated in Sigmodon with heightened aggression to the point that two species, particularly if of dichotomous size, cannot coexist in the same microhabitat. At least with regard to cotton rats, this conclusion represents a challenge to the comfortable hypotheses of coevolution and character displacement. The overall trend toward large size during Pleistocene time is considered then as the interplay of selection acting to favor large size in areas of sympatry and stochastic processes originating cotton rat populations of different body size. Because morphology and ecological strategies are stable within the cotton rat adaptive zone for millions of years, it is suggested that mammalian speciation events that result in exploitation of a new adaptive zone are uncommon and occasionally cross higher taxonomic categories. These events are defined as first-order speciation events, in contrast to second-order events that occur in clades within the same adaptive zone.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akersten, W. A. 1970. Red Light local fauna (Blancan) of the Love Formation, southeastern Hudspeth County, Texas. Bull. Texas Mem. Mus., No. 20:152.Google Scholar
Baker, R. H. 1969. Cotton rats of the Sigmodon fulviventer group. Contr. Mammal. Misc. Pub. No. 51. Univ. Kansas Must Nat. Hist.:177232.Google Scholar
Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., and Sams, S. 1978. Relationships between body size and some life history parameters. Oecologia. 37:257272.Google Scholar
Boellstorff, J. 1978. North American Pleistocene stages reconsidered in light of probable Pliocene-Pleistocene continental glaciation. Science. 202:305307.Google Scholar
Bowers, J. R. 1971. Resting metabolic rate in the cotton rat Sigmodon. Phys. Zool. 44:137148.Google Scholar
Brown, W. L. Jr. and Wilson, E. O. 1956. Character displacement. Syst. Zool. 5:4964.Google Scholar
Cameron, G. N. and Spencer, S. R. 1983. Field growth rates and dynamics of body mass for rodents on the Texas coastal prairie. J. Mammal. 64:656665.Google Scholar
Cantwell, R. J. 1969. Fossil Sigmodon from the Tusker locality, 111 Ranch, Arizona. J. Mammal. 50:375378.Google Scholar
Creighton, G. K. 1980. Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J. Zool., Lond. 191:435443.CrossRefGoogle Scholar
Damuth, J. 1981. Population density and body size in mammals. Nature. 290:699700.Google Scholar
Eldredge, N. 1974. Character displacement in evolutionary time. Am. Zool. 14:10831097.Google Scholar
Eshelman, R. E. 1975. Geology and paleontology of the early Pleistocene (late Blancan) White Rock fauna from north-central Kansas. C. W. Hibbard Mem. Vol. 4, Mus. Paleontol., Univ. Michigan, Ann Arbor:160.Google Scholar
Fagerstrom, J. A. 1978. Paleobiologic application of character displacement and limiting similarity. Syst. Zool. 27:463468.Google Scholar
Fenchel, T. 1974. Intrinsic rate of natural increase: the relationship with body size. Oecologia. 14:317326.Google Scholar
Fitch, H. S., Fitch, V. R., and Kettle, W. D. 1984. Reproduction, population changes and interactions of small mammals on a natural area in northeastern Kansas. Occ. Papers Mus. Nat. Hist., Univ. Kansas:137.Google Scholar
Fleharty, E. D. and Choate, J. R. 1973. Bioenergetic strategies of the cotton rat, Sigmodon hispid us. J. Mammal. 54:680692.Google Scholar
Fleharty, E. D., Krause, M. E., and Stinnett, D. P. 1973. Body composition, energy content, and lipid cycles of four species of rodents. J. Mammal. 54:426438.Google Scholar
Garn, S. M. and Lewis, A. B. 1958. Tooth-size, body-size and “giant” fossil man. Am. Anthro. 60:874880.Google Scholar
Gidley, J. W. 1922. Preliminary report on fossil vertebrates of the San Pedro Valley, Arizona. U.S. Geol. Surv., Prof. Paper 131E:119131.Google Scholar
Gingerich, P. D. 1976. Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Papers on Paleontol. No. 15, Mus. Paleontol. Univ. Michigan, Ann Arbor:1141.Google Scholar
Gingerich, P. D. 1983. Rates of evolution: effects of time and temporal scaling. Science. 222:159161.Google Scholar
Gingerich, P. D. and Smith, B. H. 1984. Allometric scaling in the dentition of primates and insectivores. Pp. 257272. In: Jungers, W. L., ed. Size and Scaling in Primate Biology. Plenum; New York.Google Scholar
Gingerich, P. D., Smith, B. H., and Rosenberg, K. 1982. Allometric scaling in the dentition of Primates and prediction of body weight from tooth size in fossils. Am. J. Phys. Anthro. 58:81100.Google Scholar
Glass, G. E. and Slade, N. A. 1980. Population structure as a predictor of spatial association between Sigmodon hispidus and Microtus ochrogaster. J. Mammal. 61:473485.CrossRefGoogle Scholar
Golley, F. B., Gentry, J. B., Caldwell, L. D., and Davenport, L. B. Jr. 1965. Number and variety of small mammals on the AEC Savannah River Plant. J. Mammal. 46:118.Google Scholar
Gould, S. J. 1974. The origin and function of “bizarre“ structures: antler size and skull size in the “Irisk elk,” Megaloceras giganteus. Evolution. 28:191220.Google Scholar
Gould, S. J. 1975. On the scaling of tooth size in mammals. Am. Zool. 15:351362.Google Scholar
Gould, S. J. and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 3:115151.Google Scholar
Grant, P. R. 1972. Convergent and divergent character displacement. Biol. J. Linnean Soc. 4:3968.Google Scholar
Grant, P. R. 1975. The classical case of character displacement. Evol. Biol. 8:237337.Google Scholar
Haldane, J. B. S. 1949. Suggestions as to quantitative measurement of rates of evolution. Evolution. 3:5156.Google Scholar
Hall, E. R. 1981. The Mammals of North America. Vols. 1 and 2, 2nd ed.John Wiley & Sons; New York. 1181 pp.Google Scholar
Harestad, A. S. and Bunnell, F. L. 1979. Home range and body weight—a reevaluation. Ecology. 60:389402.Google Scholar
Hershkovitz, P. 1955. South American marsh rats genus Holochilus, with a summary of sigmodont rodents. Fieldiana, Zool. 37:639673.Google Scholar
Hibbard, C. W. 1938. An upper Pliocene fauna from Meade County, Kansas. Trans. Kansas Acad. Sci. 40:239265.Google Scholar
Hibbard, C. W. 1941. The Borchers fauna, a new Pleistocene interglacial fauna from Meade County, Kansas. Bull. Kansas Geol. Surv. 38:197220.Google Scholar
Izett, G. A. and Wilcox, R. E. 1982. Map showing localities and inferred distributions of the Huckleberry Ridge, Mesa Falls, and Lava Creek Ash Beds (Pearlette Family Ash Beds) of Pliocene and Pleistocene age in the western United States and southern Canada. U.S. Geol. Surv., Misc. Invest. Ser., No. I-1325.Google Scholar
Jones, W. T. 1985. Body size and life-history variables in heteromyids. J. Mammal. 66:128132.Google Scholar
Kleiber, M. 1961. The Fire of Life: An Introduction to Animal Energetics. John Wiley; New York. 454 pp.Google Scholar
Lindsay, E. H., Johnson, N. M., and Opdyke, N. D. 1975. Correlation of North American land mammal ages and geometric chronology. Pp. 111119. In: Smith, G. R. and Friedland, N. E., eds. Studies on Cenozoic Paleontology and Stratigraphy, C. W. Hibbard Memor. Vol. 3, Mus. Paleontol., Univ. Michigan; Ann Arbor.Google Scholar
Martin, E. P. 1956. A population study of the prairie vole (Microtus ochrogaster) in northeastern Kansas. Univ. Kansas Pub. Mus. Nat. Hist. 8:361416.Google Scholar
Martin, R. A. 1968. Late Pleistocene distribution of Microtus pennsylvanicus. J. Mammal. 49:265271.CrossRefGoogle Scholar
Martin, R. A. 1974. Fossil mammals from the Coleman IIA fauna, Sumter County. Pp. 3599. In: Webb, S. D., ed. Pleistocene Mammals of Florida. Univ. Fla. Press; Gainesville.Google Scholar
Martin, R. A. 1979. Fossil history of the rodent genus Sigmodon. Evol. Monogr. No. 2:136.Google Scholar
Martin, R. A. 1980. Body mass and basal metabolism of extinct mammals. Comp. Biochem. Physiol. 66A:307314.Google Scholar
Martin, R. A. 1981. On extinct hominid population densities. J. Human Evol. 10:427428.Google Scholar
Martin, R. A. 1984. The evolution of cotton rat body mass. Pp. 179183. In: Genoways, M. H. and Dawson, M. R., eds. Contributions in Quaternary Paleontology: A Volume in Memorial to John E. Guilday. Cam. Mus. Nat. Hist., Spec. Publ. No. 8, Pittsburgh.Google Scholar
Martin, R. A. and Webb, S. D. 1974. Late Pleistocene mammals from the Devil's Den fauna, Levy County. Pp. 114145. In: Webb, S. D., ed. Pleistocene Mammals of Florida. Univ. Florida Press; Gainesville.Google Scholar
McNab, B. K. 1963. Bioenergetics and the determination of home range size. Am. Nat. 97:133140.Google Scholar
McNab, B. K. 1980. Food habits, energetics, and the population biology of mammals. Am. Nat. 116:106124.Google Scholar
Opdyke, N. D., Lindsay, E. H., Johnson, N. M., and Downs, T. 1977. The paleomagnetism and magnetic polarity stratigraphy of the mammal-bearing section of Anza Borrego State Park, California. Quatern. Res. 7:316329.Google Scholar
Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge Univ. Press; New York. 329 pp.Google Scholar
Peters, R. H. and Raelson, J. V. 1984. Relations between individual size and mammalian population density. Am. Nat. 124:498517.Google Scholar
Peters, R. H. and Wassenberg, K. 1983. The effect of body size on animal abundance. Oecologia. 60:8996.Google Scholar
Petersen, M. K. 1973. Interactions between the cotton rats Sigmodon fulviventer and S. hispidus. Am. Midl. Nat. 90:319333.Google Scholar
Pianka, E. R. 1978. Evolutionary Ecology. 2nd ed.Harper & Row; New York. 397 pp.Google Scholar
Prochaska, M. L. and Slade, N. A. 1981. The effect of Sigmodon hispidus on summer diel activity patterns of Microtus ochrogaster in Kansas. Trans. Kansas Acad. Sci. 84:134138.Google Scholar
Raup, D. M. 1977. Stochastic models in evolutionary paleontology. Pp. 5978. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Sacher, G. A. 1978. Longevity and aging in vertebrate evolution. BioScience. 28:497501.Google Scholar
Sacher, G. A. and Staffeldt, E. F. 1974. Relation of gestation time and brain weight of placental mammals: implications for the theory of vertebrate growth. Am. Nat. 105:593615.Google Scholar
Scheck, S. H. 1982. A comparison of thermoregulation and evaporative water loss in the hispid cotton rat, Sigmodon hispidus texianus, from northern Kansas and south-central Texas. Ecology. 63:361369.Google Scholar
Slade, N. A., Sauer, J. R., and Glass, G. E. 1984. Seasonal variation in field-determined growth rates of the hispid cotton rat (Sigmodon hispidus). J. Mammal. 65:263270.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution. 27:126.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman; San Francisco. 332 pp.Google Scholar
Strain, W. S. 1966. Blancan mammalian fauna and Pleistocene formations, Hudspeth County, Texas. Bull. Texas Memor. Mus., No. 10:155.Google Scholar
Terman, M. R. 1974. Behavioral interactions between Microtus and Sigmodon. A model from competitive exclusion. J. Mammal. 55:705719.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evol. Theory. 1:130.Google Scholar
Van Valen, L. 1976. Energy and evolution. Evol. Theory. 1:179229.Google Scholar
Van Valen, L. 1980. Evolution as a zero-sum game for energy. Evol. Theory. 4:289300.Google Scholar
Watts, W. A. 1980. The late Quaternary vegetation history of the southeastern United States. Ann. Rev. Ecol. Syst. 11:355380.Google Scholar
Wecker, S. C. 1963. The role of early experience in habitat selection by the prairie deer mouse, Peromyscus maniculatus bairdi. Ecol. Monogr. 33:307325.Google Scholar
Western, D. 1979. Size, life history and ecology in mammals. Afr. J. Ecol. 17:185204.Google Scholar
Woods, C. A., Post, W., and Kirkpatrick, C. W. 1982. Microtus pennsylvanicus (Rodentia: Muridae) in Florida: a Pleistocene relict in a coastal saltmarsh. Bull. Florida State Mus., Biol. Sci. 28:2552.Google Scholar
Zakrzewski, R. J. 1975. Pleistocene stratigraphy and paleontology in western Kansas: the state of the art, 1974. Pp. 121128. In: Smith, G. R. and Friedland, N. E., eds. Studies on Cenozoic Paleontology and Stratigraphy. Mus. Paleontol., Univ. Michigan, Ann Arbor.Google Scholar