Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T05:34:17.113Z Has data issue: false hasContentIssue false

Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety

Published online by Cambridge University Press:  26 April 2018

John T. Clarke
Affiliation:
Institute of Ecology and Earth Sciences, Department of Zoology, University of Tartu, Tartu, Vanemuise 46, 51014, Estonia, and Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, U.S.A., and Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK. E-mail: [email protected]
Matt Friedman
Affiliation:
Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, 48108-1079, U.S.A., and Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK

Abstract

Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years—roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare. Furthermore, apomorphy-defined teleosts possess greater phenotypic variety than typically assumed. Comparison of crown and stem teleost partial disparity indicates that, despite a statistically significant increase in crown teleost disparity between the Late Jurassic and earliest Cretaceous, stem teleosts remained important long-term contributors to overall teleost disparity during this time.

Type
Articles
Copyright
© 2018 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alfaro, M. E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D. L., Carnevale, G., and Harmon, L. J.. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proceedings of the National Academy of Sciences USA 106:1341013414.Google Scholar
Arratia, G. 1997. Basal teleosts and teleostean phylogeny. Palaeo Ichthyologica 7:5168.Google Scholar
Arratia, G. 1999. The monophyly of Teleostei and stem-group teleosts. Consensus and disagreements. Pp. 265–334 in G. Arratia and H. P. Schultze, eds. Mesozoic fishes 2. Systematics and fossil record. Proceedings of the international meeting, Buckow, 1997. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Arratia, G. 2000a. New teleostean fishes from the Jurassic of southern Germany and the systematic problems concerning the “pholidophoriforms.”. Palaeontologische Zeitschrift 74:113143.Google Scholar
Arratia, G. 2000b. Remarkable teleostean fishes from the Late Jurassic of southern Germany and their phylogenetic relationships. Mitteilungen aus dem Museum fuer Naturkunde in Berlin Geowissenschaftliche Reihe 3:137179.Google Scholar
Arratia, G. 2001. The sister-group of Teleostei: consensus and disagreements. Journal of Vertebrate Paleontology 21:767773.Google Scholar
Arratia, G. 2008. The varasichthyid and other crossognathiform fishes, and the break-up of Pangaea. Pp. 7192 in L. Cavin, A Longbottom, and M. Richter, eds. Break-up of Pangaea. Geological Society of London Special Publication 295.Google Scholar
Arratia, G. 2013. Morphology, taxonomy, and phylogeny of triassic pholidophorid fishes (Actinopterygii, Teleostei). Journal of Vertebrate Paleontology 33:1138.Google Scholar
Arratia, G. 2017. New Triassic teleosts (Actinopterygii, Teleosteomorpha) from northern Italy and their phylogenetic relationships among the most basal teleosts. Journal of Vertebrate Paleontology 37:e1312690.Google Scholar
Arratia, G., and Thies, D.. 2001. A new teleost (Osteichthyes, Actinopterygii) from the Early Jurassic Posidoizia shale of Northern Germany. Mitteilungen aus dem Museum für Naturkunde zu Berlin, Geowissenschaftliche Reihe 4:167187.Google Scholar
Arratia, G., and Tischlinger, H.. 2010. The first record of Late Jurassic crossognathiform fishes from Europe and their phylogenetic importance for teleostean phylogeny. Fossil Record 13:317341.Google Scholar
Bartram, A. 1977. A problematical Upper Cretaceous holostean fish genus Aphanepygus . Journal of Natural History 11:361370.Google Scholar
Bellwood, D., and Hoey, A.. 2004. Feeding in Mesozoic fishes: a functional perspective. Pp. 639–649 in G. Arratia and A. Tintori, eds. Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity. Proceedings of the 3rd International Meeting, Serpiano, 2001. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Bellwood, D. R. 2003. Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29:7183.Google Scholar
Bellwood, D. R., Wainwright, P. C., Fulton, C. J., and Hoey, A. S.. 2006. Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society of London B 273:101107.Google Scholar
Beltan, L. 1996. Overview of systematics, paleobiology, and paleoecology of Triassic fishes of northwestern Madagascar. Pp. 479–500 in G. Arratia, and V. Günter, eds. Mesozoic fishes. Systematics and paleoecology. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Benton, M. J. 2015. Vertebrate palaeontology, 4th ed. Wiley-Blackwell, Chichester, UK.Google Scholar
Benton, M. J., Donoghue, P. C. J., Asher, R. J., Friedman, M., Near, T. J., and Vinther, J.. 2015. Constraints on the timescale of animal evolutionary history. Palaeontologia Electronica 18.1.1FC.Google Scholar
Bermudez-Rochas, D. D., and Poyato-Ariza, F. J.. 2015. A new semionotiform actinopterygian fish from the Mesozoic of Spain and its phylogenetic implications. Journal of Systematic Palaeontology 13:265285.Google Scholar
Brito, P. M. 1997. Review of the Aspidorhynchidae (Pisces, Actinopterygii) of the Mesozoic: osteology, phylogenetic relations, environmental and biogeographic data. Geodiversitas 19:681772.Google Scholar
Butler, R. J., Barrett, P. M., Nowbath, S., and Upchurch, P.. 2009. Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35:432446.Google Scholar
Butler, R. J., Brusatte, S. L., Andres, B., and Benson, R. B. J.. 2012. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity. Evolution 66:147162.Google Scholar
Callazo, A., Bolker, J. A., and Keller, R.. 1994. A phylogenetic perspective on teleost gastrulation. American Naturalist 144:133152.Google Scholar
Carroll, R. L. 1988. Vertebrate palaeontology and evolution. Freeman, New York.Google Scholar
Cavin, L. 2001. Osteology and phylogenetic relationships of the teleost Goulmimichthys arambourgi Cavin, 1995, from the Upper Cretaceous of Goulmima, Morocco. Eclogae Geologicae Helvetiae 94:509535.Google Scholar
Cavin, L. 2010. The Late Jurassic ray-finned fish peak of diversity: biological radiation or preservational bias? Pp. 111–121 in J. S. Nelson, H. P. Schultze, and M. V. H. Wilson, eds. Origin and phylogenetic interrelationships of teleosts. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Cavin, L., and Forey, P. L.. 2007. Using ghost lineages to identify diversification events in the fossil record. Biology Letters 3:201204.Google Scholar
Cavin, L., Forey, P. L., and Lecuyer, C.. 2007. Correlation between environment and Late Mesozoic ray-finned fish evolution. Palaeogeography Palaeoclimatology Palaeoecology 245:353367.Google Scholar
Cavin, L., Deesri, U., and Suteethorn, V.. 2013a. Osteology and relationships of Thaiichthys nov gen.: a Ginglymodi from the Late Jurassic–Early Cretaceous of Thailand. Palaeontology 56:183208.Google Scholar
Cavin, L., Forey, P. L., and Giersch, S.. 2013b. Osteology of Eubiodectes libanicus (Pictet & Humbert, 1866) and some other ichthyodectiformes (Teleostei): phylogenetic implications. Journal of Systematic Palaeontology 11:115177.Google Scholar
Chakrabarty, P. 2005. Testing conjectures about morphological diversity in cichlids of lakes Malawi and Tanganyika. Copeia 2:359373.Google Scholar
Clarke, J. T., Lloyd, G. T., and Friedman, M.. 2016. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proceedings of the National Academy of Sciences USA 113:1153111536.Google Scholar
Claverie, T., and Wainwright, P. C.. 2014. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution. PLoS ONE 9:e112732.Google Scholar
Colbert, E. H. 1969. Evolution of vertebrates. Wiley, New York.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st ed. John Murray, London.Google Scholar
Deesri, U., Lauprasert, K., Suteethorn, V., Wongko, K., and Cavin, L.. 2014. A new species of the ginglymodian fish Isanichthys from the Late Jurassic Phu Kradung Formation, northeastern Thailand. Acta Palaeontologica Polonica 59:313331.Google Scholar
Deesri, U., Jintasakul, P., and Cavin, L.. 2016. A new Ginglymodi (Actinopterygii, Holostei) from the Late Jurassic–Early Cretaceous of Thailand, with comments on the early diversification of lepisosteiformes in southeast asia. Journal of Vertebrate Paleontology, 36.Google Scholar
de Pinna, M. C. C. 1996. Teleostean monophyly. Pp. 147162 in M. L. J. Stiassny, L. R. Parenti, and G. D. Johnson, eds. Interrelationships of fishes. Academic Press, San Diego.Google Scholar
Ebert, M., Kolbl-Ebert, M., and Lane, J. A.. 2015. Fauna and predator-prey relationships of ettling, an actinopterygian fish-dominated Konservat-Lagerstatte from the Late Jurassic of southern Germany. PLoS ONE 10:e0116140.Google Scholar
Egerton, P. 1852. British fossils. Descriptions of Elasmodus, Palaeoniscus, Lepidotus, Pholidophorus, Ophiopsis, Leptolepis, Lophiostomus. Geological Survey of the United Kingdom (Organic Remains), London, Memoirs, 1852, 10 articles.Google Scholar
Foote, M. 1993. Contributions of individual taxa to overall morphological disparity. Paleobiology 19:403419.Google Scholar
Forey, P. L., and Patterson, C.. 2006. Description and systematic relationships of †Tomognathus, an enigmatic fish from the English Chalk. Journal of Systematic Palaeontology 4:157184.Google Scholar
Forey, P. L., Yi, L., Patterson, C., and Davies, C. E.. 2003. Fossil fishes from the Cenomanian (Upper Cretaceous) of Namoura, Lebanon. Journal of Systematic Palaeontology 1:227330.Google Scholar
Frickhinger, K. A. 1995. Fossil atlas, fishes. Mergus, Melle, Germany.Google Scholar
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.Google Scholar
Friedman, M. 2010. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society of London B 277:16751683.Google Scholar
Friedman, M. 2012. Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proceedings of the Royal Society of London B 279:944951.Google Scholar
Friedman, M., Shimada, K., Martin, L. D., Everhart, M. J., Liston, J., Maltese, A., and Triebold, M.. 2010. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327:990993.Google Scholar
Gardiner, B. G., Maisey, J. G., and Littlewood, D. T. J.. 1996. Interrelationships of basal neopterygians. Pp. 117146 in M. L. J. Stiassny, L. R. Parenti, and G. D. Johnson, eds. Interrelationships of fishes. Academic Press, San Diego.Google Scholar
Gibson, S. 2016. Redescription and phylogenetic placement of †Hemicalypterus weiri Schaeffer, 1967 (Actinopterygii, Neopterygii) from the Triassic Chinle Formation, Southwestern United States: new insights into morphology, ecological niche, and phylogeny. PLoS ONE 11:e0163657.Google Scholar
Giles, S., Rogers, M., and Friedman, M.. 2016. Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii). Journal of Morphology. doi: 10.1002/jmor.20551.Google Scholar
Gill, E. L. 1923. The Permian fishes of the genus Acentrophorus . Proceedings of the Zoological Society of London 93:1940.Google Scholar
Giordano, P.G., Succar, C. A., Codorniú, L., Cione, A. L., and Arratia, G.. 2017. Zurupleuropholis gen. nov. (Teleostei, Albian, Argentina), first pleuropholids from the Cretaceous of South America. Cretaceous Research. doi: 10.1016/j.cretres.2017.11.017.Google Scholar
Goatley, C. H. R., Bellwood, D. R., and Bellwood, O.. 2010. Fishes on coral reefs: changing roles over the past 240 million years. Paleobiology 36:415427.Google Scholar
Grande, L., and Bemis, W. E.. 1996. Interrelationships of Acipenseriformes, with comments on “Chondrostei.” Pp. 85115 in M. L. J. Stiassny, L. R. Parenti, and G. D. Johnson, eds. Interrelationships of fishes. Academic Press, San Diego.Google Scholar
Grande, L., and Bemis, W. E.. 1998. A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy. An empirical search for interconnected patterns of natural history. Journal of Vertebrate Paleontology 18:1696.Google Scholar
Guinot, G., and Cavin, L.. 2015. “Fish” (Actinopterygii and Elasmobranchii) diversification patterns through deep time. Biological Reviews 25:23142318.Google Scholar
Hoegg, S., Brinkmann, H., Taylor, J. S., and Meyer, A.. 2004. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. Journal of Molecular Evolution 59:190203.Google Scholar
Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6:6570.Google Scholar
Hopkins, M. J., and Smith, A. B.. 2015. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proceedings of the National Academy of Sciences USA 112:37583763.Google Scholar
Hurley, I. A., Mueller, R. L., Dunn, K. A., Schmidt, E. J., Friedman, M., Ho, R. K., Prince, V. E., Yang, Z., Thomas, M. G., and Coates, M. I.. 2007. A new time-scale for ray-finned fish evolution. Proceedings of the Royal Society of London B 274:489498.Google Scholar
Kerschbaumer, M., and Sturmbauer, C.. 2011. The utility of geometric morphometrics to elucidate pathways of cichlid fish evolution. International Journal of Evolutionary Biology 2011:290245.Google Scholar
Kim, H. M., Chang, M. M., Wu, F. X., and Kim, Y. H.. 2014. A new ichthyodectiform (Pisces, Teleostei) from the Lower Cretaceous of South Korea and its paleobiogeographic implication. Cretaceous Research 47:117130.Google Scholar
Kogan, I., and Licht, M.. 2013. A Belonostomus tenuirostris (Actinopterygii: Aspidorhynchidae) from the Late Jurassic of Kelheim (southern Germany) preserved with its last meal. Palaeontologische Zeitschrift 87:543548.Google Scholar
Kriwet, J., Poyato-Ariza, F. J., and Wenz, S. A.. 1999. A revision of the pycnodontid fish Coelodus subdiscus Wenz 1989, from the Early Cretaceous of Montsec (Lleida, Spain). Treballs del Museu de Geologia de Barcelona 8:3366.Google Scholar
Labandeira, C. C. 2005. The fossil record of insect extinction: new approaches and future directions. American Entomologist 51:1429.Google Scholar
Liston, J. 2008. A review of the characters of the edentulous pachycormiforms Leesichthys, Asthenocormus and Martillichthys nov. gen. Pp. 181–198 in G. Arratia, H.-P. Schultze, and M. V. H. Wilson, eds. Mesozoic fishes 4. Homology and phylogeny. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Lloyd, G. T., and Friedman, M.. 2013. A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. Palaeogeography Palaeoclimatology Palaeoecology 372:517.Google Scholar
Maisey, J. G. 1994. Predator-prey relationships and trophic level reconstruction in a fossil fish community. Environmental Biology of Fishes 40:122.Google Scholar
Maisey, J. G., and Moody, J. M.. 2001. A review of the problematic extinct teleost fish Araripichthys, with a description of a new species from the Lower Cretaceous of Venezuela. American Museum Novitates 3324:127.Google Scholar
Marrama, G., Villier, B., Dalla Vecchia, F. M., and Carnevale, G.. 2016. A new species of Gladiopycnodus (Coccodontoidea, Pycnodontomorpha) from the Cretaceous of Lebanon provides new insights about the morphological diversification of pycnodont fishes through time. Cretaceous Research 61:3443.Google Scholar
McCord, C. L., and Westneat, M. W.. 2016. Evolutionary patterns of shape and functional diversification in the skull and jaw musculature of triggerfishes (Teleostei: Balistidae). Journal of Morphology 277:737752.Google Scholar
McCune, A. R., and Schaeffer, B.. 1986. Triassic and jurassic fishes patterns of diversity. Pp. 171–182 in K. Padian, (ed. The beginning of the age of dinosaurs: faunal change across the Triassic–Jurassic boundary. Symposium held in conjunction with the 44th annual meeting of the Society of Vertebrate Paleontology, Berkeley, California, USA, October 31, 1984. Cambridge University Press, Cambridge.Google Scholar
Meyer, A., and Van de Peer, Y.. 2005. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937945.Google Scholar
Murray, A. M., and Wilson, M. V.. 2009. A new Late Cretaceous macrosemiid fish (Neopterygii, Halecostomi) from Morocco, with temporal and geographical range extensions for the family. Palaeontology 52:429440.Google Scholar
Nelson, J. S., Grande, T. C., and Wilson, M. V.. 2016. Fishes of the world. Wiley, Hoboken, N.J.Google Scholar
Nursall, J. R. 1996. The phylogeny of pycnodont fishes. Pp. 125–152 in G. Arratia and V. Günter, eds. Mesozoic fishes. Systematics and paleoecology. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Nursall, J. R., and Capasso, L.. 2004. Gebrayelichthys (novum), an extraordinary genus of neopterygian fishes from the Cenomanian of Lebanon. Pp. 317–340 in G. Arratia and A. Tintori, eds. Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity. Proceedings of the 3rd International Meeting, Serpiano, 2001. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Oksanen, J., Guillaume, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H. H., Szoecs, E., and Wagner, H.. 2016. vegan: community ecology package, Version 2.4–0. https://CRAN.R-project.org/package=vegan.Google Scholar
Olsen, P. E. 1984. The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the relationships of the holostean fishes. Journal of Vertebrate Paleontology 4:481499.Google Scholar
Olsen, P. E., and McCune, A. R.. 1991. Morphology of the Semionotus elegans species group from the Early Jurassic part of the Newark Supergroup of Eastern North America with comments on the family Semionotidae (Neopterygii). Journal of Vertebrate Paleontology 11:269292.Google Scholar
Patterson, C. 1973. Interrelationships of holosteans. Pp. 233305 in P. H. Greenwood, R. S. Miles, and C. Patterson, eds. Interrelationships of fishes. Academic Press, London.Google Scholar
Patterson, C. 1977. The contributions of paleontology to teleostean phylogeny. Pp. 579643 in M. K. Hecht, P. C. Goody, and B. M. Hecht, eds. Major patterns in vertebrate evolution. Plenum, New York.Google Scholar
Patterson, C. 1993a. An overview of the early fossil record of acanthomorphs. Bulletin of Marine Science 52:2959.Google Scholar
Patterson, C. 1993b. Osteichthyes: Teleostei. Pp. 3344 in M. Benton, ed. The fossil record 2. Chapman & Hall, London.Google Scholar
Patterson, C., and Rosen, D. E.. 1977. Review of ichthyodectiform and other mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History 158:83172.Google Scholar
Pough, F. H., Heiser, J. B., and McFarland, W. N.. 1996. Vertebrate life, 4th ed. Prentice Hall, Upper Saddle River, N.J.Google Scholar
Poyato-Ariza, F. 2005. Pycnodont fishes: morphologic variation, ecomorphologic plasticity, and a new interpretation of their evolutionary history. Bulletin of the Kitakyushu Museum of Natural History and Human History, Series A (Natural History) 3:169184.Google Scholar
Poyato-Ariza, F. 2015. Studies on pycnodont fishes (i): evaluation of their phylogenetic position among actinopterygians. Rivista Italiana Di Paleontologia E Stratigrafia 121:329343.Google Scholar
Poyato-Ariza, F. J., and Martín-Abad, H.. 2016. The cretaceous in the evolutionary history of the Actinopterygii. Pp. 275286 in A. Khosla, and S. G. Lucas, eds. Cretaceous period: biotic diversity and biogeography. New Mexico Museum of Natural History and Science Bulletin, 71.Google Scholar
Poyato-Ariza, F. J., and Wenz, S.. 2002. A new insight into pycnodontiform fishes. Geodiversitas 24:139248.Google Scholar
Poyato-Ariza, F. J., and Wenz, S.. 2004. The new pycnodontid fish genus Turbomesodon and a revision of Macromesodon based on new material from the Lower Cretaceous of Las Hoyas, Cuenca, Spain. Pp. 341–378 in G. Arratia and A. Tintori, eds. Mesozoic fishes 3. Systematics, paleoenvironments and biodiversity. Proceedings of the 3rd International Meeting, Serpiano, 2001. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Rayner, D. H. 1941. The structure and evolution of the holostean fishes. Biological Reviews 16:218237.Google Scholar
Rohlf, F. J. 2013. tpsDig2, Version 2.17. Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, N.Y.Google Scholar
Rohlf, F. J. 2014. tpsRelw, Version 1.54. Department of Ecology and Evolution, SUNY Stony Brook, Stony Brook, N.Y.Google Scholar
Romano, C., Kogan, I., Jenks, J., Jerjen, I., and Brinkmann, W.. 2012. Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bulletin of Geosciences 87:543570.Google Scholar
Romano, C., Koot, M. B., Kogan, I., Brayard, A., Minikh, A. V., Brinkmann, W., Bucher, H., and Kriwet, J.. 2016. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biological Reviews 91:106147.Google Scholar
Romer, A. S. 1966. Vertebrate paleontology. University of Chicago Press, Chicago.Google Scholar
Schaeffer, B. 1973. Interrelationships of chondrosteans. Pp. 207226 in P. H. Greenwood, R. S. Miles, and C. Patterson, eds. Interrelationships of fishes. Academic Press, London.Google Scholar
Schaeffer, B., and Patterson, C.. 1984. Jurassic fishes from the western United States, with comments on Jurassic fish distribution. American Museum Novitates 2796:186.Google Scholar
Schultze, H.-P., and Wiley, E. O.. 1984. The neopterygian Amia as a living fossil. Pp. 153159 in N. Eldredge, and S. M. Stanley, eds. Living fossils. Springer, New York.Google Scholar
Senn, D. G. 1996. Environments and functional anatomy of certain Mesozoic fishes. Pp. 551–154 in G. Arratia and V. Günter, eds. Mesozoic fishes. Systematics and paleoecology. Proceedings of the international meeting, Eichstatt, 1993. Verlag Dr. Friedrich Pfeil, Munich, Germany.Google Scholar
Sferco, E., Lopez-Arbarello, A., and Baez, A. M.. 2015. Phylogenetic relationships of dagger Luisiella feruglioi (Bordas) and the recognition of a new clade of freshwater teleosts from the Jurassic of Gondwana. BMC Evolutionary Biology 15:268.Google Scholar
Silva Santos, R. da. 1985. Araripichthys castilhoi novo gênero e especie de teleostei da Formaçao Santana, Chapada do Araripe, Brasil. In D. A. Campos, C. S. Ferreira, I. M. Brito, and C. F. Viana, eds. Coletânea de Trabalhos Paleontológicos, Série Geologia 27: 133–140. Ministerio das Minas e Energia. D.N.P.M., Rio de Janeiro.Google Scholar
Smithwick, F. M. 2015. Feeding ecology of the deep-bodied fish Dapedium (Actinopterygii, Neopterygii) from the Sinemurian of Dorset, England. Palaeontology 58:293311.Google Scholar
Stubbs, T. L., and Benton, M. J.. 2016. Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. Paleobiology 42:547573.Google Scholar
Sun, Z. Y., Tintori, A., Lombardo, C., and Jiang, D. Y.. 2016. New miniature neopterygians from the Middle Triassic of Yunnan Province, South China. Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen 282:135156.Google Scholar
Thies, D., and Waschkewitz, J.. 2015. Redescription of Dapedium pholidotum (Agassiz, 1832) (Actinopterygii, Neopterygii) from the Lower Jurassic Posidonia Shale, with comments on the phylogenetic position of Dapedium Leach, 1822. Journal of Systematic Palaeontology 14:339364.Google Scholar
Thomson, K. S. 1977. The pattern of diversification among fishes. In A. Hallam, ed. Developments in palaeontology and stratigraphy 5:377404. Elsevier, Amsterdam.Google Scholar
Tintori, A., Sun, Z. Y., Ni, P. G., Lombardo, C. Y., Jiang, D. Y., and Motani, R.. 2015. Oldest stem Teleostei from the late Ladinian (middle triassic) of southern China. Rivista Italiana Di Paleontologia E Stratigrafia 121:285296.Google Scholar
Viohl, G. 1990. Piscivorous fishes of the Solnhofen lithographic limestone. Pp. 287303 in A. J. Boucot, ed. Evolutionary paleobiology of behavior and coevolution. Elsevier, New York.Google Scholar
Wang, M., and Lloyd, G. T.. 2016. Rates of morphological evolution are heterogeneous in Early Cretaceous birds. Proceedings of the Royal Society of London B 283.Google Scholar
Wen, W., Zhang, Q.-Y., Hu, S.-X., Zhou, C.-Y., Xe, T., Huang, J.-Y., Chen, Z. Q., and Benton, M. J.. 2012. A new basal actinopterygian fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China. Acta Palaeontologica Polonica 57:149160.Google Scholar
Wiley, E. O., and Schultze, H.-P.. 1984. Family Lepisosteida (gars) as living fossils. Pp. 160165 in N. Eldredge, and S. M. Stanley, eds. Living fossils. Springer, New York.Google Scholar
Woodward, C. J. 1890. A synopsis of the fossil fishes of the English Lower Oolites. Proceedings of the Geologists’ Association 11:285306.Google Scholar
Xu, G., and Wu, F.. 2012. A deep-bodied ginglymodian fish from the Middle Triassic of eastern Yunnan Province, China, and the phylogeny of lower neopterygians. Chinese Science Bulletin 57:111118.Google Scholar
Xu, G.-H., and Gao, K.-Q.. 2011. A new scanilepiform from the Lower Triassic of northern Gansu Province, China, and phylogenetic relationships of non-teleostean Actinopterygii. Zoological Journal of the Linnean Society 161:595612.Google Scholar
Xu, G.-H., Zhao, L.-J., Gao, K.-Q., and Wu, F.-X.. 2013. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates. Proceedings of the Royal Society of London B 280:20122261.Google Scholar
Zelditch, M. L., Swiderski, D. L., and Sheets, H. D.. 2012. Geometric morphometrics for biologists: a primer, 2nd ed. Elsevier Academic Press, Burlington, Mass.Google Scholar