Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-08T02:21:57.878Z Has data issue: false hasContentIssue false

Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence

Published online by Cambridge University Press:  08 February 2016

Bruce J. MacFadden
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611. E-mail: [email protected]
Bruce J. Shockey
Affiliation:
Department of Zoology, University of Florida, Gainesville, Florida, 32611. E-mail: [email protected]

Abstract

The exceedingly rich middle Pleistocene mammalian fauna from the classic Ensenadan Tarija basin in southern Bolivia contains a diversity of medium to large-bodied herbivores consisting of both endemic (†Toxodontia, †Litopterna, Xenarthra) and immigrant (Rodentia, Proboscidea, Perissodactyla, and Artiodactyla) taxa. In order to characterize feeding ecology and niche differences, a suite of morphological characters was measured for each of 13 species of herbivorous mammals from the Pleistocene of Tarija; these were combined with carbon isotopic results from tooth enamel. (The Xenarthra were excluded from this study because they lack tooth enamel.)

Several different bivariate and multivariate combinations of characters can be used to characterize the feeding adaptations, niches, and guild composition of the Tarija mammalian herbivores. During the Pleistocene the browsing guild in the Tarija basin is interpreted to include the tapir (Tapirus tarijensis), extinct llama (Palaeolama weddelli), peccary (Tayassu sp.), and deer (Hippocamelus sp.). The mixed-feeding guild included two horse species (Hippidion principale and Onohippidium devillei), litoptern (Macrauchenia patachonica), and capybara (Neochoerus tarijensis). The grazing guild included the numerically dominant horse (Equus insulatus), two lamine species (Lama angustimaxilla and cf. Vicugna, provicugna), notoungulate (Toxodon platensis), and gomphothere proboscidean (Cuvieronius hyodon). The grazing guild has the widest range of body sizes relative to the two other guilds. Closely related sympatric species within the Equidae and Camelidae differentiate their niches from one another using a combination of body size, feeding ecology, and probably local habitat. Most of the paleoecological reconstructions resulting from this combined morphological and isotopic analysis corroborate previous studies based primarily on morphology; there are, however, some notable surprises.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, S. A. 1993. Los mamíferos Bolivianos: Notas de distribución y claves de identificación. Publicación Especial del Instituto de Ecología, La Paz, Bolivia.Google Scholar
Behrensmeyer, A. K., Damuth, J. D., DiMichelle, W. A., Potts, R., Sues, H.-D, and Wing, S. L. 1992. Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago.Google Scholar
Berggren, W., Kent, D. H., Swisher, C. C. III, and Aubrey, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. pp. 129212In Berggren, W A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds. Geochronology, time-scales, and global stratigraphic correlation. Society of Sedimentary Geology Special Publication No. 54.Google Scholar
Boule, M., and Thévenin, A. 1920. Mammifères fossiles de Tarija. Imprimerie National, Paris.Google Scholar
Boutton, T. W. 1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. pp. 173195In Coleman, D. C. and Fry, B., eds. Carbon isotope techniques. Academic Press, San Diego.CrossRefGoogle Scholar
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.Google Scholar
Burkart, A. 1975. Evolution of grasses and grasslands in South America. Taxon 24:5566.CrossRefGoogle Scholar
Cavagnaro, J. B. 1988. Distribution of C3 and C4 grasses at different altitudes in a temperate arid region of Argentina. Oecologia 76:273277.CrossRefGoogle Scholar
Cerling, T. E. 1992. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 97:241247.CrossRefGoogle Scholar
Cerling, T. E., and Sharp, Z. 1997. Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation. Palaeogeography, Palaeoclimatology, Palaeoecology (in press).CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., and MacFadden, B. J. In press. Carbon isotopes, diets of North American equids, and the evolution of North American C4 grasslands. In Griffiths, H., Robinson, D., and Van Gardingen, P., eds. Stable isotopes and integration of biological, ecological and geochemical processes. Bios Scientific, Oxford.Google Scholar
Cerling, T. E., Wang, Y., and Quade, J. 1993. Global ecological change in the late Miocene: expansion of C4 ecosystems. Nature 361:344345.CrossRefGoogle Scholar
Conway Morris, S. 1995. Ecology in deep time. Trends in Ecology and Evolution 10:290295.CrossRefGoogle ScholarPubMed
Damuth, J., and MacFadden, B. J. 1989. Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, New York.Google Scholar
Dyer, M. I., Detling, J. K., Coleman, D. C., and Hilbert, D. W. 1982. The role of herbivores in grasslands. pp. 255295In Estes, J. R., Tyrl, R. J., and Brunken, J. N., eds. Grasses and grasslands: systematics and ecology. University of Oklahoma Press, Norman.Google Scholar
Ehleringer, J. R., Sage, R. F., Flanagan, L. B., and Pearcy, R. W. 1991. Climate change and the evolution of C4 photosynthesis. Trends in Ecology and Evolution 6:9599.CrossRefGoogle Scholar
Eisenberg, J. F. 1981. The mammalian radiations: An analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago.Google Scholar
Eisenberg, J. F. 1989. Mammals of the Neotropics: The northern Neotropics, Vol. 1, Panama, Colombia, Venezuela, Guyana, Suriname, French Guiana. University of Chicago Press, Chicago.Google Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotopic discrimination and photosynthesis. Annual Reviews of Plant Physiology and Plant Molecular Biology 40:503537.CrossRefGoogle Scholar
Flynn, J. J., and Swisher, C. C. III. 1995. Cenozoic South American Land Mammal ages: Correlation to global chronologies. pp. 317333In Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J., eds. Geochronology, time-scales, and global stratigraphic corrrelation. Society of Economic Sedimentary Geology Special Publication No. 54.Google Scholar
Frailey, D., Campbell, K. E. Jr., and Wolff, R. G. 1980. Additions to the knowledge of Hippocamelus, Ctenomys and Myocastor from the middle Pleistocene of the Tarija basin, Bolivia. Occasional Papers of the Museum of Natural History, University of Kansas 85:114.Google Scholar
Hillson, S. 1986. Teeth. Cambridge University Press, Cambridge.Google ScholarPubMed
Hoffstetter, R. 1963. La faune pleistocene de Tarija (Bolivie). Note préliminaire. Bulletin du Muséum National d'Histoire Naturelle 35:194203.Google Scholar
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:415427.CrossRefGoogle Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist 93:145159.CrossRefGoogle Scholar
Janis, C. M. 1976. The evolutionary strategy of the Equidae and the origins of rumen and caecal digestion. Evolution 30:757774.CrossRefGoogle ScholarPubMed
Janis, C. M. 1982. Evolution of horns in ungulates: ecology and paleoecology. Biological Reviews 57:261318.CrossRefGoogle Scholar
Janis, C. M. 1989. Correlation of cranial and dental variables with body size in ungulates and macropodoids. pp. 255299In Damuth, J. and MacFadden, B. J., eds. Body size in mammalian paleobiology: Estimation and biological implications. Cambridge University Press, New York.Google Scholar
Janis, C. M. 1990. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets in extinct species. pp. 241259in Boucout, A. J., ed. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.Google Scholar
Janis, C. M. 1995. Correlations between craniodental morphology and feeding behavior in ungulates: Reciprocal illumination between living and fossil taxa. pp. 7698in Thomason, J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, New York.Google Scholar
Janis, C. M., and Ehrhardt, D. 1988. Correlation of the relative muzzle width and relative incisor width with dietary preferences in ungulates. Zoological Journal of the Linnean Society 92:267284.CrossRefGoogle Scholar
Janzen, D. H., and Martin, P. S. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:1927.CrossRefGoogle ScholarPubMed
Kingdon, J. 1979. East African mammals: an atlas of evolution in Africa, Vol. III, Part B. University of Chicago Press, Chicago.Google Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358:319322.CrossRefGoogle Scholar
Latorre, C., and Quade, J. 1994. Stable carbon and oxygen isotopes from the late Neogene of northwestern Argentina and the expansion of C4 grasses in South America. Geological Society of America Abstracts with Programs 26:A227.Google Scholar
Lee-Thorp, J., and van der Merwe, N. J. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712715.Google Scholar
MacFadden, B. J. 1992. Fossil horses: Systematics, paleobiology and evolution of the Family Equidae. Cambridge University Press, New York.Google Scholar
MacFadden, B. J. 1997. Pleistocene horses from Tarija, Bolivia, and validity of the genus †Onohippidium (Mammalia, Equidae). Journal of Vertebrate Paleontology 17:199218.CrossRefGoogle Scholar
MacFadden, B. J., and Azzaroli, A. 1987. Cranium of Equus insulatus (Mammalia, Equidae) from the middle Pleistocene of Tarija, Bolivia. Journal of Vertebrate Paleontology 7:325334.CrossRefGoogle Scholar
MacFadden, B. J., and Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: A 10 million-year sequence from the Neogene of Florida: Journal of Vertebrate Paleontology 16:103115.CrossRefGoogle Scholar
MacFadden, B. J., and Hulbert, R. C. Jr. 1990. Body size estimates and size distribution of ungulate mammals from the late Miocene Love Bone Bed of Florida. pp. 337363In Damuth, J. and MacFadden, B. J., eds. Body size in mammalian paleobiology: Estimation and biological implications. Cambridge University Press, New York.Google Scholar
MacFadden, B. J., Siles, O., Zeitler, P., Johnson, N. M., and Campbell, K. E. Jr. 1983. Magnetic polarity stratigraphy of the middle Pleistocene (Ensenadan) Tarija Formation of southern Bolivia. Quaternary Research 19:172187.CrossRefGoogle Scholar
MacFadden, B. J., Wang, Y., Cerling, T. E. and Anaya, F. 1994. South American fossil mammals and carbon isotopes: a 25 million-year sequence from the Bolivian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 107:257268.CrossRefGoogle Scholar
MacFadden, B. J., Cerling, T. E., and Prado, J. 1996. Cenozoic terrestrial ecosystem evolution in Argentina: Evidence from carbon isotopes of fossil mammal teeth. Palaios 11:319327.CrossRefGoogle Scholar
Marshall, L. D., Berta, A., Pascual, R., Reig, O. A., Bombin, M., and Mones, A. 1984. Mammals and stratigraphy: geochronology of the continental mammal-bearing Quaternary of South America. Palaeovertebrata, Mémoire Extraordinaire 1:176.Google Scholar
McClellan, G. H., and Kauwenbergh, S. J. V. 1990. Mineralogy of sedimentary apatites. pp. 2331In Notholt, A. J. G. and Jarvis, I., eds. Phosphorite research and development. Geological Society Special Publication, London.Google Scholar
McNaughton, S. J. 1979. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. American Naturalist 113:691703.CrossRefGoogle Scholar
McNaughton, S. J. 1991. Evolutionary ecology of large tropical herbivores. pp. 509522In Price, P. W., Lewinsohn, T. M., Wilson Fernandes, G., and Benson, W. W. eds. Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York.Google Scholar
Mones, A. 1975. Estudios sobre la familia Hydrochoeridae (Rodentia), VI. Catálogo anotado de los ejemplares-tipo. Comunicaciones paleontologicas del Museo de Historia Natural de Montevideo 5:99128.Google Scholar
Mones, A. 1984. Estudios sobre la familia Hydrochoeridae, XIV. Revision systemática (Mammalia, Rodentia). Senckenbergiana Biologica 65:117.Google Scholar
Mones, A., and Ojasti, J. 1986. Hydrochoerus hydrochaeris. Mammalian Species 264:17.CrossRefGoogle Scholar
Muñoz-Reyes, J. 1981. Geografía escolar de Bolivia. Libreria Editorial “Juventud,” La Paz.Google Scholar
Newesley, H. 1989. Fossil bone apatite. Applied Geochemistry 4:233245.CrossRefGoogle Scholar
Olson, E. C. 1952. The evolution of a Permian vertebrate chronofauna. Evolution 6:181196.CrossRefGoogle Scholar
Oppenheim, V. 1943. The fossiliferous basin of Tarija, Bolivia. Journal of Geology 51:548555.CrossRefGoogle Scholar
Osborn, H. F. 1936. Proboscidea, Vol. 1. American Museum Press, New York.Google Scholar
Owen-Smith, N. 1985. Niche separation among African ungulates. pp. 167171in Vrba, E. S., ed. Species and speciation. Transvaal Museum Monograph No. 4, Pretoria.Google Scholar
Owen-Smith, N. 1988. Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pascual, R. 1967. Paleontografía Bonaerense, IV, Vertebrata. Comisión de Investigación Cientifica.Google Scholar
Patterson, B., and Pascual, R., 1972. The fossil mammal fauna of South America. pp. 247309In Keast, A., Erk, F. C., and Glass, B., eds. Evolution, mammals, and southern continents. State University of New York Press, Albany.Google Scholar
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pimm, S. L. 1991. The balance of nature? Ecological issues in the conservation of species and communities. University of Chicago Press, Chicago.Google Scholar
Quade, J., Cerling, T. E., Barry, J. C., Morgan, M. E., Pilbeam, D. R., Chivas, A.R., Lee-Thorp, J. A., and van der Merwe, N. J. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology (Isotope Geoscience Section) 94:183192.CrossRefGoogle Scholar
Redford, K. H., and Eisenberg, J. F. 1992. Mammals of the Neotropics: the southern cone, Vol. 2, Chile, Argentina, Uruguay, Paraguay. University of Chicago Press, Chicago.Google Scholar
Root, R. B. 1967. The niche exploitation pattern of the Blue-gray Gnatcatcher. Ecological Monographs 37:317350.CrossRefGoogle Scholar
SAS Institute Inc. 1985. SAS® User's Guide: Basics, Version 5 Edition. SAS Institute, Cary, N.C.Google Scholar
Schmidt-Nielsen, K. 1990. Animal physiology: adaptation and environment. Cambridge University Press, Cambridge.Google Scholar
Schoeninger, M. J., and DeNiro, M. J. 1982. Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of ancient animals. Nature 297:577578.CrossRefGoogle Scholar
Scott, W. B. 1913. A history of land mammals in the Western Hemisphere. Macmillan, New York.Google Scholar
Shackleton, N. J., and Opdyke, N. D. 1976. Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28-239 late Pliocene to latest Pliocene. Geological Society of America Memoir 45:449464.CrossRefGoogle Scholar
Simpson, G. G. 1953. The major features of evolution. Columbia University Press, New York.CrossRefGoogle Scholar
Simpson, G. G. 1980. Splendid isolation: the curious history of South American mammals. Yale University Press, New Haven.Google Scholar
Solounias, N., and Moelleken, S. M. C. 1993. Dietary adaptation of some extinct ruminants determined by premaxillary shape. Journal of Mammalogy 74:10591071.CrossRefGoogle Scholar
Solounias, N., Fortelius, M., and Freeman, P. 1994. Molar wear rates in ruminants: a new approach. Annals Zoologica Fennici 31:219227.Google Scholar
Solounias, N., Moelleken, S. M. C., and Plavcan, J. M. 1995. Predicting the diet of extinct bovids using masseteric morphology. Journal of Vertebrate Paleontology 15:795805.CrossRefGoogle Scholar
Sullivan, C. H., and Krueger, H. W. 1983. Carbon isotope analysis of fossil bone apatite. Nature 301:177.CrossRefGoogle Scholar
Tieszen, L. L., Senyimba, M. M., Imbamba, S. K., and Troughton, J. H. 1979. The distribution of C3 and C4 grasses and carbon isotopic discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337350.CrossRefGoogle ScholarPubMed
van der Merwe, N. J. 1982. Carbon isotopes, photosynthesis, and archaeology. American Scientist 70:596606.Google Scholar
Van Valkenburgh, B. 1995. Tracking ecology over geological time: evolution within guilds of vertebrates. Trends in Ecology and Evolution 10:7175.CrossRefGoogle Scholar
Walker, E. P. 1975. Mammals of the world, 3d ed.Johns Hopkins, Baltimore.Google Scholar
Wang, Y., Cerling, T. E., and MacFadden, B. J. 1994. Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 107:269279.CrossRefGoogle Scholar
Webb, S. D. 1974. Pleistocene llamas of Florida, with a brief review of the Lamini. pp. 170213in Webb, S. D., ed. Pleistocene mammals of Florida. University of Florida Press, Gainesville.Google Scholar
Webb, S. D. 1978. A history of savanna vertebrates in the New World, Part II, South America and the Great Interchange. Annual Review of Ecology and Systematics 9:393426.CrossRefGoogle Scholar
Webb, S. D. 1983. The rise and fall of the late Miocene ungulate fauna in North America. pp. 267306in Nitecki, M. H., ed. Coevolution. University of Chicago Press, Chicago.Google Scholar
Webb, S. D. 1985. Late Cenozoic mammal dispersals between the Americas. pp. 357386In Stehli, F. G. and Webb, S. D., eds. The Great American Biotic Interchange. Plenum, New York,.CrossRefGoogle Scholar
Webb, S. D. 1991. Ecogeography and the Great American Interchange. Paleobiology 17:266280.CrossRefGoogle Scholar
Yoshida, A., and Yamazaki, E. 1982. Micro-fossils. pp. 5762in Takai, F., ed. Tarija mammal-bearing formation in Bolivia. Research Institute of Evolutionary Biology. Tokyo.Google Scholar