Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T21:24:09.277Z Has data issue: false hasContentIssue false

A 40,000-year record of discontinuous evolution of island snails

Published online by Cambridge University Press:  14 July 2015

Satoshi Chiba*
Affiliation:
Institute of Geosciences, Shizuoka University, Oya, Shizuoka, 422 Japan

Abstract

The rate and pattern of phenotypic evolution of the endemic land-snail Mandarina chichijimana in the oceanic Bonin Islands through 40,000 years were examined by using radiocarbon-dated fossil specimens. There are drastic variations in rates and patterns of changes detected. Some characters show irregular fluctuation within a restricted range. Other characters show a rapid shift from stasis in one state to stasis in an alternative state. Because of the isolation, the limited distributions, and the presence of transitional forms, these changes are regarded as genuine evolutionary transformations within a lineage. These findings suggest that phyletic evolution is essentially irregular and punctuated.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bell, M. A., Baumgartner, J. V., and Olson, E. C. 1985. Patterns of temporal change in single morphological characters of a Miocene stickleback fish. Paleobiology 11:258278.CrossRefGoogle Scholar
Burla, H. 1984. Induced environmental variation in Arianta arbustorum. Genetica 64:6567.CrossRefGoogle Scholar
Cain, A. J. 1988. The scoring of polymorphic color and pattern variation and its genetic basis in molluscan shells. Malacologia 28:115.Google Scholar
Cain, A. J., and Sheppard, P. M. 1957. Some breeding experiments with Cepaea nemoralis (L.). Journal of Genetics 55:195199.CrossRefGoogle Scholar
Carson, H., and Kaneshiro, K. Y. 1976. Drosophila of Hawai: systematics and evolutionary genetics. Annual Review of Ecology and Systematics 7:311346.CrossRefGoogle Scholar
Cheetham, A. H. 1986. Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries. Paleobiology 12:190202.CrossRefGoogle Scholar
Chiba, S. 1989. Taxonomy and morphologic diversity of Mandarina (Pulmonata) in the Bonin Islands. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 155:218251.Google Scholar
Chiba, S. 1992. Land snails Mandarina in the Bonin Islands. Kagaku 62:696704. [In Japanese.]Google Scholar
Clarke, B., and Murray, J. 1969. Ecological genetics and speciation in land snails of the genus Partula. Biological Journal of the Linnean Society 1:3142.CrossRefGoogle Scholar
Cook, L. M. 1967. The genetics of Cepaea nemoralis. Heredity 22:397410.CrossRefGoogle Scholar
Cook, L. M., and Cain, A. J. 1980. Population dynamics, shell size and morph frequency in experimental populations of the land snail Cepaea nemoralis. Biological Journal of the Linnean Society 14:259292.CrossRefGoogle Scholar
Cooke, C. M., and Kondo, Y. 1960. Revision of Tornatellinidae and Achatinellidae (Gastropoda, Pulmonata). Bulletin of the Bernice Pauahi Bishop Museum 221:1303.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism. pp. 82115in Schopf, T. J. M., ed. Models in paleobiology. W. H. Freeman, San Francisco.Google Scholar
Geary, D. H. 1990. Patterns of evolutionary tempo and mode in the radiation of Melanopsis (Gastropoda, Melanopsidae). Paleobiology 16:492511.CrossRefGoogle Scholar
Geary, D. H. 1992. An unusual pattern of divergence between two fossil gastropods: ecophenotypy, dimorphism, or hybridization? Paleobiology 18:93109.CrossRefGoogle Scholar
Gingerich, P. D. 1983. Rates of evolution: effect of time and temporal scaling. Science 222:159161.CrossRefGoogle ScholarPubMed
Goodfriend, G. A. 1986. Variation in land-snail shell form and size and its causes: a review. Systematic Zoology 35:204223.CrossRefGoogle Scholar
Goodfriend, G. A., and Stipp, J. J. 1983. Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11:575577.2.0.CO;2>CrossRefGoogle Scholar
Gould, S. J. 1969. An evolutionary microcosm: Pleistocene and Recent history of the land snail P. (Poecilozonites) in Bermuda. Bulletin of the Museum of Comparative Zoology 138:407532.Google Scholar
Gould, S. J. 1984. Morphological channeling by structural constraint: convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on the discovery on the largest Cerion. Paleobiology 10:172194.CrossRefGoogle Scholar
Gould, S. J. 1989. A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43:516539.Google ScholarPubMed
Gould, S. J., and Eldredge, N. 1977. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115151.CrossRefGoogle Scholar
Grant, P. 1986. Ecology and evolution of Darwin's finches. Princeton University Press, Princeton, N.J.Google Scholar
Gupta, S. K. 1985. Radiocarbon dating practices at ANU. Radiocarbon Dating Research, Garran, Australia.Google Scholar
Johnson, M. S., Clarke, B., and Murray, J. 1977. Genetic variation and reproductive isolation in Partula. Evolution 31:116126.CrossRefGoogle ScholarPubMed
Johnson, M. S., Murray, J., and Clarke, B. 1993. The ecological genetics and adaptive radiation of Partula on Moorea. pp. 167238In Futuyma, D. and Antonovics, J., eds. Oxford surveys in evolutionary biology, Vol. 10. Oxford University Press, Oxford.Google Scholar
Kadota, K. 1975. 14C age of deposits just below Miyanohama dune in Chichijima, Ogasawara Islands. Earth Science (Chikyu-Kagaku) 29:152153.Google Scholar
Kemp, P., and Bertness, M. D. 1984. Snail shape and growth rates: evidence for plastic shell allometry in Littorina littorea. Proceedings of the National Academy of Sciences USA 81CrossRefGoogle ScholarPubMed
Lack, D. 1947. Darwin's finches. Cambridge University Press, Cambridge.Google Scholar
MacArthur, R. H., and Wilson, E. O. 1967. The theory of island biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Malmgren, B. A., Berggren, W. A., and Lohman, G. P. 1983. Evidence for punctuated gradualism in the late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology 9:377389.CrossRefGoogle Scholar
Minato, H. 1978. Speciation of the genus Mandarina from the Ogasawara Islands (Pulmonata, Camaenidae). Memoirs of the National Science Museum (Tokyo) 11:3751. [In Japanese.]Google Scholar
Murray, J., and Clarke, B. 1966. The inheritance of polymorphic shell characters in Partula (Gastropoda). Genetics 54:12611277.CrossRefGoogle ScholarPubMed
Murray, J., and Clarke, B. 1980. The genus Partula on Moorea: speciation in progress. Proceedings of the Royal Society of London B 211Google Scholar
Murray, J., Johnson, M. S., and Clarke, B. 1982. Microhabitat differences among genetically similar species of Partula. Evolution 36:316325.CrossRefGoogle ScholarPubMed
Murray, J., Clarke, B., and Johnson, M. S. 1993. Adaptive radiation and community structure of Partula on Moorea. Proceedings of the Royal Society of London B 254Google Scholar
Okutomi, K., Izeki, T., Hioki, T., Kitayama, K., and Sumi, H. 1982. Flora of the Ogasawara Islands. Aboc, Kamakura, Japan.Google Scholar
Pratt, H. D., Bruner, P. L., and Barrett, D. G. 1987. The birds of Hawaii and the tropical Pacific. Princeton University Press, Princeton, N.J.Google Scholar
Roth, B. 1981. Shell color and banding variation in two coastal colonies of Monadenia fidelis (Gray) (Gastropoda: Pulmonata). Wasmann Journal of Biology 38:3951.Google Scholar
Roth, B., and Bogan, A. E. 1984. Shell color and banding parameters of the Liguus fasciatus phenotype (Mollusca: Pulmonata). American Malacological Bulletin 3:110.Google Scholar
Sheldon, P. R. 1987. Parallel gradualistic evolution of Ordovician trilobites. Nature 330:561563.CrossRefGoogle ScholarPubMed
Simpson, G. G. 1944. Tempo and mode of evolution. Columbia University Press, New York.Google Scholar
Solem, A. 1973. Island size and species diversity in Pacific island land snails. Malacologia 14:397400.Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.Google Scholar
Stipp, J. J., Eldridge, K. L., Cohen, S. J., and Webber, K. 1974. University of Miami radiocarbon dates I. Radiocarbon 16:402408.CrossRefGoogle Scholar
Thorpe, J. P. 1983. Enzyme variation, genetic distance and evolutionary divergence in relation to levels of taxonomic separation. pp. 131152In Oxford, G. S. and Rollinson, D., eds. Protein polymorphism: adaptive and taxonomic significance. Academic Press, London.Google Scholar
Vermeij, G. J. 1980. Gastropod shell, growth rate, allometry and adult size: environmental implications. pp. 379394In Rhoads, D. C. and Lutz, R. A., eds. Skeletal growth of aquatic organisms. Plenum, New York.CrossRefGoogle Scholar
Wei, K., and Kennett, J. P. 1988. Phyletic gradualism and punctuated equilibrium in the late Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14:345363.CrossRefGoogle Scholar
Williamson, P. G. 1981. Paleobiological documentation of speciation in Cenozoic molluscs from Turkana Basin. Nature 293:437443.CrossRefGoogle Scholar
Woodruff, D. D., Staub, K. C., Upatham, E. S., Viyanant, V., and Yuan, H. C. 1988. Genetic variation in Oncomelania hupensis: Schistosoma japonicum transmitting snails in China and the Philippines are distinct species. Malacologia 29:347361.Google Scholar