Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T02:16:16.039Z Has data issue: false hasContentIssue false

Spatial Composition Techniques and Sound Spatialisation Technologies

Published online by Cambridge University Press:  25 October 2010

Marije A.J. Baalman*
Affiliation:
Pibemalaan 16, 8749 GS, Pingjum, The Netherlands

Abstract

In the context of current developments towards an exchange format for spatial audio, it is important to consider the interactions and tensions between spatial composition techniques and spatial audio technologies. This paper gives an overview of common compositional techniques and audio technologies used for spatial compositions, and discusses various forms of hybrid uses of audio technologies. A spatial composition created using certain audio technologies may lose integrity when transferred to another audio technology, when the compositional intent is not taken into account. Tools that are flexible with regard to the spatial audio reproduction technology applied are useful for the comparison of various spatialisation methods during the compositional process, but are also essential to enable a hybrid use of technologies within one composition.

Type
Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adriaensen, F. 2007. A Tetrahedral Microphone Processor for Ambisonic Recording. Proceedings of the Linux Audio Conference 2007, Technische Universität Berlin, 22–25 March.Google Scholar
Baalman, M.A.J. 2002. Spaciousness in Concert Halls: Perceptibility of IACC-differences. Master’s thesis, Technische Universität Delft.Google Scholar
Baalman, M.A.J. 2007. On Wave Field Synthesis and Electro-Acoustic Music: State of the Art 2007. Proceedings of the International Computer Music Conference 2007, Copenhagen, Denmark, 27–31 August.Google Scholar
Baalman, M.A.J. 2008. On Wave Field Synthesis and Electro-Acoustic Music, with a Particular Focus on the Reproduction of Arbitrarily Shaped Sound Sources. PhD thesis, Technische Universität Berlin.Google Scholar
Barrett, N. 2002. Spatio-Musical Composition Strategies. Organised Sound 7(3): 313323.CrossRefGoogle Scholar
Bartetzki, A. 2007. A Software Based Mixing Desk for Acousmatic Sound Diffusion. Proceedings of the Linux Audio Conference 2007, Technische Universität Berlin.Google Scholar
Berkhout, A.J. 1988. A Holographic Approach to Acoustic Control. Journal of the Audio Engineering Society 36(12): 977995.Google Scholar
Blauert, J. 1997. Spatial Hearing. Cambridge, MA: The MIT Press.Google Scholar
Böhmer, K. 1961. Raum-Former. In Das böse Ohr: Texte zur Musik 1961–1991, ed. Burkhardt Söll. Cologne: DuMont, 1993.Google Scholar
Daniel, J., Nicol, R., Moreau, S. 2003. Further Investigations of High Order Ambisonics and Wavefield Synthesis for Holophonic Sound Imaging. Proceedings of the 114th Convention of the Audio Engineering Society, Amsterdam, 22–25 March.Google Scholar
De Bruijn, W.P.J., Boone, M.M. 2003. Application of Wave Field Synthesis in Life-Size Videoconferencing. Proceedings of the 114th Convention of the Audio Engineering Society, Amsterdam, 22–25 March.Google Scholar
Gertich, F., Gerlach, J., Föllmer, G. 1996. Musik …, verwandelt. Das Elektronische Studio der TU Berlin 1953–1995. Hofheim: Wolke Verlag.Google Scholar
Huygens, C. 1690. Traité de la lumière; où sont expliquées les causes de ce qui luy arrive dans la réflexion et dans la refraction et particulièrement dans l’étrange refraction du cristal d’Islande; avec un discours de la cause de la pesanteur. Leiden: P. van der Aa.Google Scholar
Kendall, G.S. 1995. The Decorrelation of Audio Signals and its Impact on Spatial Imagery. Computer Music Journal 19(4): 7187.CrossRefGoogle Scholar
Kendall, G.S. 2007. The Artistic Play of Spatial Organization: Spatial Attributes, Scene Analysis and Auditory Spatial Schemata. Proceedings of the International Computer Music Conference 2007, Copenhagen, 27–31 August, vol. 1: 63–8.Google Scholar
Kendall, G.S., Peters, N., Geier, M. 2008. Towards an Interchange Format for Spatial Audio Scenes. Proceedings of the International Computer Music Conference (ICMC), Belfast, August.Google Scholar
Kopp, S. 2005. Programmierung eines Plugins zur Dekodierung quadrofon matrizierter Audiosignale. Master’s thesis, Technische Universität Berlin.Google Scholar
Lossius, T., Balthazar, P., De la Hogue, Th. 2009. DBAP: Distance Based Amplitude Panning. Proceedings of the International Computer Music Conference (ICMC) 2009, Montreal, QC: 489–92.Google Scholar
Malham, D.G., Myatt, A. 1995. 3-D Sound Spatialization using Ambisonic Techniques. Computer Music Journal 19(4): 5870.CrossRefGoogle Scholar
Momeni, A., Wessel, D. 2003. Characterizing and Controlling Musical Material Intuitively with Geometric Models. Proceedings of the 2003 International Conference on New Interfaces for Musical Expression, McGill University, Montreal, QC, 22–24 May: 54–61.Google Scholar
Moore, B.C.J. 2004. An Introduction to the Psychology of Hearing. London: Elsevier Academic Press.Google Scholar
Plogsties, J., Baum, O., Grill, B. 2003. Conveying Spatial Sound using MPEG–4. Proceedings of the AES 24th Conference, Banff, 26–28 June.Google Scholar
Potard, G. 2006. 3D-Audio Object Oriented Coding. PhD thesis, University of Wollongong.Google Scholar
Pulkki, V. 2001. Spatial Sound Generation and Perception by Amplitude Panning Techniques. PhD thesis, Helsinki University of Technology.Google Scholar
Ramakrishnan, C., Goßmann, J., Brümmer, L. 2006. The ZKM Klangdom. Proceedings of the New Interfaces for Musical Expression – NIME 06. Paris: IRCAM – Centre Pompidou in collaboration with MINT/OMF, Sorbonne University, 140143.Google Scholar
Rutz, H.H. 2004. Meloncillo – eine graphische Benutzeroberfläche zur musikalischen Raumklangsteuerung mit Implementierung einer OSC-Schnittstelle zur Klangsynthese. Master’s thesis, Technische Universität Berlin.Google Scholar
Schroeder, M.R. 1962. Natural Sounding Artificial Reverberation. Journal of the Audio Engineering Society 10(3): 219223.Google Scholar
Treib, M. 1996. Space Measured in Seconds. Princeton, NJ: Princeton University Press.Google Scholar
Vaggione, H. 2001. Composing Musical Spaces by Means of Decorrelation of Audio Signals. Addendum of the COST G–6 Conference on Digital Audio Effects (DAFX–01), Limerick, 6–8 December: Addendum 1–8.Google Scholar
Varèse, E. 1936. New Instruments and New Music. In C. Cox and D. Warner (eds), Audio Culture: Readings in Modern Music. New York: Continuum, 2006.Google Scholar
Wittek, H. 2002. OPSI: Optimised Phantom Source Imaging of the High Frequency Content of Virtual Sources in Wave Field Synthesis. Munich: Institut für Rundfunktechnik.Google Scholar