Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T20:35:56.680Z Has data issue: false hasContentIssue false

Perspectives on ruminant nutrition and metabolism I. Metabolism in the Rumen

Published online by Cambridge University Press:  14 December 2007

E. F. Annison
Affiliation:
Department of Animal Science, University of Sydney, Camden N.S.W. 2570, Australia
W. L. Bryden
Affiliation:
Department of Animal Science, University of Sydney, Camden N.S.W. 2570, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Advances in knowledge of ruminant nutrition and metabolism during the second half of the twentieth century have been reviewed. Part I is concerned with metabolism in the rumen: Part II discusses utilization of nutrients absorbed from the rumen and lower tract to support growth and reproduction. The time frame was prompted by the crucial advances in ruminant physiology which arose from the work of Sir Jospeh Barcroft and his colleagues at Cambridge in the 1940s and 50s, and by the brilliant studies of Robert Hungate on rumen microbiology at much the same time.

In reviewing the growth of knowledge of the role of bacteria, protozoa, fungi and bacteriophages in the rumen, outstanding developments have included the identification and characterization of fungi and the recognition that the utilization of polysaccharides in the rumen is accomplished by the sequential activities of consortia of rumen microorganisms. The role of protozoa is discussed in relation to the long standing debate on whether or not the removal of protozoa (defaunation) improves the efficiency of ruminant production. In relation to nitrogen (N) metabolism, the predation of bacteria by protozoa increases protein turnover in the rumen and reduces the efficiency of microbial protein production. This may account for the beneficial effects of defaunation where dietary N intakes are low and possibly rate limiting for growth and production.

Current approaches to the measurement of rates of production of short chain fatty acids (SCFA) in the rumen based on the mathematical modelling of isotope dilution data are outlined. The absorption of SCFA from the rumen and hindgut is primarily a passive permeation process.

The role of microorganisms in N metabolism in the rumen has been discussed in relation to ammonia and urea interrelationships and to current inadequacies in the measurement of both protein degradation in the rumen and microbial protein synthesis. The growth of knowledge of digestion and absorption of dietary lipids has been reviewed with emphasis on the antimicrobial activity of lipids and the biohydrogenation of unsaturated fatty acids. The protection of unsaturated dietary fats from ruminal biohydrogenation is an approach to the manipulation of the fatty acid composition of meat and dairy products.

Discussion of the production of toxins in the rumen and the role of microorganisms in detoxification has focused on the metabolism of oxalate, nitrate, mycotoxins, saponins and the amino acid mimosine. Mimosine occurs in the tropical shrub leucaena, which is toxic to cattle in Australia but not in Hawaii. Tolerance to leucaena stems from the presence of a bacterium found in the rumen of Hawaiian cattle, which when transferred to Australian cattle survives and confers protection from mimosine. The genetic modification of rumen microorganisms to improve their capacity to ultilize nutrients or to detoxify antinutritive factors is an attractive strategy which has been pursued with outstanding success in the case of fluoroacetate. A common rumen bacterium has been genetically modified to express the enzyme fluoroacetate dehalogenase. The modified organism has been shown to survive in the rumen at metabolically significant levels and to confer substantial protection from fluoroacetate poisoning.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1998

References

Adams, J. C., Gazaway, J. A., Brailsford, M. D.. Hartman, P. A. & Jacobson, N. L. (1966). Isolation of bacteriophages from the bovine rumen. Experientia 22, 717718.CrossRefGoogle Scholar
Adams, N. R. (1995). Detection of the effects of phytoestrogens on sheep and cattle. Journal of Animal Science 73, 15091515.CrossRefGoogle ScholarPubMed
Agricultural and Food Research Council (1992). Technical Committee on Responses to Nutrients. Report no. 9. Nutritive Requirements of Ruminant Animals: Protein.Nutrition Abstracts and Reviews back62, 787–835.Google Scholar
Akin, D. E. & Benner, R. (1988). Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Applied and Environmental Microbiology 54, 11171125.CrossRefGoogle ScholarPubMed
Allison, M. J. (1970). Nitrogen metabolism of ruminal microorganisms. In Physiology of Digestion and Metabolism in the Ruminant (Internarional Symposium on Ruminant Physiology 3, 1969), pp. 456473 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Allison, M. J., Maybeny, W. R., McSweeney, C. S. & Stahl, D. A. (1992). Synergistes jonesii, gen. nov. sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Systematic and Applied Microbiology 15, 522529.CrossRefGoogle Scholar
Allison, M. J. & Rasmussen, M. A. (1992). The potential for plant detoxification through manipulation of the rumen fermentation. In Poisonous Plants, pp. 367376 [James, L. F., Keeler, R. F., Bailey, E. M., Cheeke, P.R. and Hegarty, M, editors]. Ames, IA: Iowa State University Press.Google Scholar
Anderson, R. C., Majak, W., Rasmussen, M. A. & Allison, M. J. (1998). Detoxification potential of a new species of ruminal bacteria that metabolize nitrate and naturally occurring nitrotoxins. In Toxic Plants and Other Natural Toxicants, pp. 152158 [Garland, T. and Barr, A. C., editors]. Wallingford: CAB International.Google Scholar
Annison, E. F. (1956). Nitrogen metabolism in the sheep. Protein digestion in the rumen. Biochemical Journal 64, 705714.CrossRefGoogle ScholarPubMed
Annison, E. F. (1965). Absorption from the ruminant stomach. In Physiology of Digestion in rhe Ruminant (International Symposium on Ruminant Physiology 2. 1964), pp. 185197 [Dougherty, R. W., Allen, R. S., Burroughs, W., Jacobson, N. L. and McGilliard, A. D., editors]. London: Butterworths.Google Scholar
Annison, E. F. & Bryden, W. L. (1999). Perspectives on ruminant metabolism. 11. Metabolism in ruminant tissues. Nutrition Research Reviews in press.Google Scholar
Annison, E. F., Hill, K. J., Lindsay, D. B. & Peters, R. A. (1960). Fluoroacetate poisoning in sheep. Journal of Comparative Pathology 70, 145155.CrossRefGoogle ScholarPubMed
Annison, E. F. & Lewis, D. (1959). Metabolism in the Rumen. London: Methuen.Google Scholar
Armstrong, D. G. (1993). Quantitative animal nutrition and metabolism: a review. Australian Journal of Agricultural Research 44, 333345.CrossRefGoogle Scholar
Armstrong, D. G. & Gilbert, H. I. (1991). The application of biotechnology for future livestock production. In Physiological Aspects of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology, 7, 1989) pp. 737761 [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Ashes, J. R., Fleck, E. & Scott, T. W. (1995). Dietary manipulation of membrane lipid and its implications for their role in the production of second messengers. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, pp. 373385 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Ashes, J. R., Galati, S. K. & Scott, T. W. (1997). Potential to alter the content and composition of milk fat through nutrition. Journal of Dairy Science 80, 22042212.CrossRefGoogle ScholarPubMed
Baker, F. (1943). Direct microscopical observations upon the rumen population of the ox. I. Qualitative characteristics of the rumen population. Annals of Applied Biology 30, 230239.CrossRefGoogle Scholar
Baker, S. K. (1997). Gut microbiology and its consequences for the ruminant. Proceedings of the Nutrition Society of Australia 21, 613.Google Scholar
Baldwin, R. L. (1995). Modeling Ruminant Digestion and Metabolism. London: Chapman & Hall.Google Scholar
Banks, A. K. & Hilditch, T. P. (1931). The glyceride structure of beef tallows. Biochemical Journal 25, 11681182.CrossRefGoogle ScholarPubMed
Barcroft, J., McAnally, R. A. & Phillipson, A. T. (1944). Absorption of volatile fatty acids from the alimentary tract of the sheep and other animals. Journal of Experimental Biology 20, 120129.CrossRefGoogle Scholar
Barry, T. N. & Blaney, B. J. (1987). Secondary compounds of forages. In The Nutrition of Herbivores, pp. 91120 [Hacker, J. B. and Ternouth, J. H., editors]. New York: Academic Press.Google Scholar
Bauchart, D. F., Legay-Carmier, F., Doreau, M. & Gaillard, B. (1990). Lipid metabolism of liquid-associated and solid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. British Journal of Nutrition 63, 563578.CrossRefGoogle ScholarPubMed
Bauchop, T. (1979). The rumen anaerobic fungi: colonizers of plant fibre. Annales de Recherches Vétérinaires 10, 246248.Google ScholarPubMed
Bauchop, T., Clarke, R. T. J. & Newhook, J. C. (1975). Scanning electron microscope study of bacteria associated with the rumen epithelium of sheep. Applied Microbiology 30, 668675.CrossRefGoogle ScholarPubMed
Bauchop, T. & Elsden, S. R. (1960). The growth of microorganisms in relation to their energy supply. Journal of General Microbiology 23, 457469.Google ScholarPubMed
Bauchop, T. & Mountford, D.O. (1981). Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Applied and Environmental Microbiology 42, 11031110.CrossRefGoogle ScholarPubMed
Beever, D. E. & Cottrill, B. R. (1994). Protein systems for feeding ruminant livestock: a European assessment. Journal of Dairy Science 77, 20312043.CrossRefGoogle ScholarPubMed
Bennetts, H. W., Underwood, E. J. & Shier, F. L. (1946). A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Australian Veterinary Journal 22, 212.CrossRefGoogle ScholarPubMed
Bergman, E. N., Reid, R. S., Murray, M. G., Brockway, J. M. & Whitelaw, F. G. (1965). Interconversions and production of volatile fatty acids in the sheep rumen. Biochemical Journal 97, 5358.CrossRefGoogle ScholarPubMed
Bickerstaffe, R., Noakes, D. E. & Annison, E. F. (1972). Quantitative aspects of fatty acid biohydrogenation, absorption and transfer into milk fat in the lactating goat, with special reference to the cis- and trans- isomers of octadecenoate and linoleate. Biochemical Journal 130, 607617.CrossRefGoogle Scholar
Bird, S. H. (1989). Production from ciliate-free ruminants. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 233–245 [Nolan, J. V., Leng, R. A. and Demeyer, D. I., editors]. Armidale, NSW: Penambul Books.Google Scholar
Bird, S. H. & Leng, R. A. (1985). Productivity responses to eliminating protozoa from the rumen of sheep. In Reviews in Rural Science 6. pp. 109117 [Leng, R. A., Barker, J. S. F., Adams, D. B. and Hutchinson, K. J., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Blackburn, T. H. (1965). Nitrogen metabolism in the rumen. In Physiology of Digestion in the Ruminant (lnternational Symposium on Ruminant Physiology 2. 1964). pp. 322334 [Dougherty, R. W., Allen, R. S., Burroughs, W., Jacobson, N. L. and McGilliard, A. D., editors]. Washington: Butterworths. 563578.Google Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson.Google Scholar
Blaxter, K. L. (1991). Animal production and food: real problems and paranoia. Animal Production 53, 261269.Google Scholar
Blaxter, K. L. & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. British Journal of Nutrition 19, 511522.CrossRefGoogle ScholarPubMed
Brethour, J. R., Sirny, R. J. & Tillman, A. D. (1958). Further studies concerning the effects of fats in sheep rations. Journal of Animal Science 17, 171179.CrossRefGoogle Scholar
Broderick, G. A., Wallace, R. J. & Ørskov, E. R. (1991). Control of rate and extent of protein degradation. In Physiological Aspects of Digestion and Metabolism in Ruminants (Inrernational Symposium on Ruminant Physiology 7. 1989). pp. 541592 [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Bruce, L. A., Lobley, G. E. & MacRae, J. C. (1987). Measurement of volatile fatty acid production rates in sheep given roughage. Research in Veterinary Science 42, 4752.CrossRefGoogle ScholarPubMed
Bryant, M. P. & Robinson, I. M. (1962). Some nutritional characteristics of predominant culturable ruminal bacteria. Journal of Bacteriology 84, 605614.CrossRefGoogle ScholarPubMed
Bryant, M. P. & Robinson, I. M. (1963). Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria. Journal of Dairy Science 46. 150154.CrossRefGoogle Scholar
Bryden, W. L. (1998). Mycotoxin contamination of Australian pastures and feedstuffs. In Toxic Plants and Other Natural Toxicants, pp. 464478 [Garland, T. & Barr, A. C., editors]. Wallingford. UK: CAB International.Google Scholar
Carlson, J. R. & Breeze, R. G. (1984). Ruminal metabolism of plant toxins with emphasis on indolic compounds. Journal of Animal Science 58, 10401049.CrossRefGoogle ScholarPubMed
Chalmers, M. I., Cuthbertson, D. P. & Synge, R. L. M. (1954). Ruminal ammonia formation in relation to the protein requirement of sheep. I. Duodenal administration and heat processing as factors influencing fate of casein supplements. Journal of Agricultural Science 44, 254262.CrossRefGoogle Scholar
Chalupa, W., Rickabaugh, B., Kronfeld, D. S. & Sklan, D. (1984). Rumen fermentation in vitro as influenced by long chain fatty acids. Journal of Dairy Science 67, 14391444.CrossRefGoogle ScholarPubMed
Chalupa, W. & Sniffen, C. J. (1994). Carbohydrate, protein and amino acid nutrition of lactating dairy cattle. In Recent Advances in Animal Nutrition-1994 (University of Nottingham Feed Manufacturers' Conference 28, 1994). pp. 265275 [Garnsworthy, P. C. and Cole, D. J. A., editors]. Nottingham: Nottingham University Press.Google Scholar
Cheeke, P. R. (1998). Natural Toxicants in Feeds, Forages and Poisonous Plants. 2nd edn. Danville, USA: Interstate Publishers.Google Scholar
Chen, G., Sniffen, C. J. & Russell, J. B. (1987). Concentration and estimated flow of peptides from the rumen of dairy cattle: effects of protein quantity, protein solubility and feeding frequency. Journal of Animal Science 70, 983992.Google ScholarPubMed
Cheng, K.-J., & Costerton, J. W. (1980). Adherent rumen bacteria—their role in the digestion of plant material, urea and epithelial cells. In Digestive Physiology and Metabolism in Ruminants (International Symposium on Ruminant Physiology 5, 1979), pp. 227250 [Ruckebush, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Cheng, K.-J., Forsberg, C. W., Minato, H. & Costerton, J. W. (1991). Microbial ecology and physiology of feed degradation within the rumen. In Physiological Aspects of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology 7. 1989), pp. 595624 [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Chesson, A., Forsberg, C. W. & Grenet, E. (1995). Improving the digestion of plant cell walls and fibrous feeds. In Recent Developments in the Nutrition of Herbivores, pp. 249277 [Journet, M., Grenet, E., Farce, M. H., Theriez, M., Demarquilly, C., editors]. Paris: INRA.Google Scholar
Clark, J. H., Klusmeyer, T. H. & Cameron, M. R. (1992). Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. Journal of Dairy Science 75, 23042323.CrossRefGoogle Scholar
Coleman, G. S. (1975). The relationship between rumen ciliate protozoa and bacteria. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1974), pp. 149–164 [McDonald, I. W. and Warner, A. C. I, editors]. Annidale, NSW: University of New England Publishing Unit.Google Scholar
Costerton, J. W., Geesey, G. G. & Cheng, K.-I. (1978). How bacteria stick. Scientific American 238(1), 8695.CrossRefGoogle ScholarPubMed
Cotta, M. A. & Hespell, R.B. (1986). Protein and amino metabolism of rumen bacteria. In Control of Digestion and Metabolism in RumiMnrs (International Symposium on Ruminant Physiology 6. 1984), pp. 122136 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Crutzen, R. J. (1995). The role of methane in atmospheric chemistry and climate. InRuminant Physiology: Digestion, Metabolism Growth and Reproduction, pp. 291313 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Czerkawski, J. W., Blaxter, K. L. & Wainman, F.W. (1966 a). The effect of functional groups other than carboxyl on the metabolism of C18 and C12 alkyl compounds by sheep. British Journal of Nutrition 20, 495508.CrossRefGoogle Scholar
Czerkawski, J. W., Blaxter, K. L. & Wainman, F. W. (1966 b). The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. British Journal of Nutrition 20, 349362.CrossRefGoogle Scholar
Davies, H. L. (1987). Limitations to livestock production associated with phytoestrogens and bloat. In Temperate Pastures: their production use and management. pp. 446456 [Wheeler, J. L., Pcarson, G. C. I. and Robards, G. E., editors]. Melbourne, Australia: CSIRO.Google Scholar
Dawson, K. A. & Allison, M. J. (1988). Digestive disorders and nutritional toxicity. In The Rumen Microbial Ecosystem. pp. 445459 [Hobson, P. N., editor]. London: Elsevier Applied Science.Google Scholar
Dawson, R. M. C. & Kemp, P. (1970). Biohydrogenation of dietary fats in ruminants. In Physiology of Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 3, 1969). pp. 504518 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
De Graeve, K. G., Grivet, J. P., Durand, M., Beaumatin, P., Cordelet, C. & Hannequart, G. (1994). Competition between reductive acetogenesis and methanogenesis in the pig large-intestinal flora. Journal of Applied Bacteriology 76, 5561.CrossRefGoogle ScholarPubMed
Dehority, B. A. (1991). Effects of microbial synergism on fibre digestion in the rumen. Proceedings of the Nutrition Society 50, 149159.CrossRefGoogle ScholarPubMed
Demeyer, D. I. (1989). Effect of defaunation on rumen fibre digestion and digesta kinetics. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 171180 [Nolan, J. V., Leng, R. A, and Demeyer, D. I., editors]. Armidale, NSW: Penambul Books.Google Scholar
Demeyer, D. I. & van Nevel, C. J. (1975). Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1974). pp. 366382 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Doreau, M. & Ferlay, A. (1994). Digestion and utilisation of fatty acids by ruminants. Animal Feed Science and Technology 45, 379396.CrossRefGoogle Scholar
Dunlop, R. H. & Hammond, P. B. (1965). D-Lactic acidosis of ruminants. Annals of the New York Academy of Sciences 119, 11091132.CrossRefGoogle ScholarPubMed
Egan, A. R., Boda, K. & Varady, J. (1986). Regulation of nitrogen metabolism and recycling. In Control of Digestion and Metabolism in Ruminants (International Symposium on Ruminants physiology 6, 1984), pp. 386402 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Erasmus, L. J., Botha, P. M. & Kistner, A. (1992). Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. Journal of Dairy Science 75, 30563065.CrossRefGoogle ScholarPubMed
ęsdale, W. J., Broderick, G. A. & Satter, L. D. (1969). Measurement of ruminal volatile fatty acid production from alfalfa hay or corn silage rations using a continuous infusion isotope dilution technique. Journal of Dairy Science 51, 18231830.CrossRefGoogle Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within the gastro-intestinal tract of ruminants. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1975), pp. 277291. [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Faichney, G. J. (1986). The kinetics of particulate matter in the rumen. In Control of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology 6, 1984), pp. 173195 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Ferguson, K. A. (1975). The protection of dietary proteins and amino acids against microbial fermentation in the rumen. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1975), pp. 448464 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Nutrition and wool growth. The effect of protecting dietary protein from microbial degradation in the rumen. Australian Journal of Science 30, 215217.Google Scholar
Firkins, J. L., Weiss, W. P. & Piwonka, E. J. (1992). Quantification of intraruminal recycling of microbial nitrogen using nitrogen-15. Journal of Animal Science 70, 32233233.CrossRefGoogle ScholarPubMed
Flaoyen, A. & Froslie, A. (1997). Photosensitization disorders. In Handbook of Plant and Fungal Toxicants, pp. 191204 [D'Mello, J. P. F., editor]. Boca Raton, FL: CRC Press.Google Scholar
Flint, H. J. & Forsberg, C. W. (1995). Polysaccharide degradation in the rumen: biochemistry and genetics. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, pp. 4363 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Fonty, G., Bernalier, A. & Gouet, P. H. (1990). Degradation of lignocellulosic forages by anaerobic fungi. In Advances in Biological Treatment of lignocellulosic Materials, pp. 253268 [Coughlan, M. P. and Collaco, M. T., editors]. London: Elsevier.Google Scholar
France, J. & Siddons, R. C. (1993). Volatile fatty acid production. In Quantitative Aspects of Ruminant Digestion and Metabolism, pp. 107121 [Forbes, J. M. and France, J., editors]. Wallingford: CAB International.Google Scholar
Franzolin, R. & Dehority, B. A. (1996). Effect of prolonged high-concentrate feeding on ruminal protozoa concentrations. Journal of Animal Science 74,28032809.CrossRefGoogle ScholarPubMed
Gäbel, G. & Sehested, J. (1997). SCFA transport in the forestomach of ruminants. Comparative Biochemistry and Physiology 118A, 367374.CrossRefGoogle Scholar
Galbraith, H. & Miller, T. B. (1973). Effects of metal cations and pH on the antibacterial activity and uptake of long-chain fatty acids. Journal of Applied Microbiology 36, 635646.Google ScholarPubMed
Galbraith, H., Miller, T. B., Paton, A. M. & Thompson, J. K. (1971). Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. Journal of Applied Bacteriology 34, 803813.CrossRefGoogle ScholarPubMed
Garton, G. A. (1961). Influence of the rumen on the digestion and metabolism of lipids. In Digestive Physiology and Nutrition of the Ruminant (University of Nottingham Easter School in Agricultural Science 7, 1960), pp. 140153 [Lewis, D., editor]. London: Butterworths.Google Scholar
Garton, G. A. (1977). Fatty acid metabolism in ruminants. In Biochemistry of Lipids, vol. 2, pp. 337370 [Goodwin, T. W., editor]. Baltimore, MD: University Park Press.Google Scholar
Gilkes, N. R., Henrissat, B., Kilburn, D. G., Miller, R. C. & Warren, R. A. J. (1991). Domains in microbial β1,4-glycanases: sequence conservation, function, and enzyme families. Microbiological Reviews 55, 303315.CrossRefGoogle ScholarPubMed
Gordon, G. L. R. & Phillips, M. W. (1998). The role of anaerobic gut fungi in ruminants. Nutrition Research Reviews 11, 133168.CrossRefGoogle ScholarPubMed
Grainger, R. B., Bell, M. C., Stroud, J. W. & Baker, F.H. (1961). Effect of various cations and corn oil on crude cellulose digestibility by sheep. Journal of Animal Science 20, 319322.Google Scholar
Greening, R. C. & Leedle, J. A. Z. (1989). Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Archives of Microbiology 151, 399406.CrossRefGoogle ScholarPubMed
Gregg, K., Hamdorf, B., Henderson, K., Kopecny, J. & Wong, C. (1997). Genetically modified rumen bacteria protect sheep from fluoroacetate poisoning. In Recent Advances in Nutrition in Australia, pp. 6367 [Corbett, J. L., Choct, M., Nolan, J. V. and Rowe, I. B., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Gregg, K. & Sharpe, H. (1991). Enhancement of rumen microbial detoxification by gene transfer. In Physiological Aspects of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology 7, 1989). pp. 719735Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Hammond, A. C. (1995). Leucaena toxicosis and its control in ruminants. Journal of Animal Science 73, 14871492.CrossRefGoogle ScholarPubMed
Harfoot, C. G. & Hazlewood, G. P. (1988). Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem, pp. 285322 [Hobson,, P. N., editor]. London:Elsevier Applied Science.Google Scholar
Hartley, R. D., Morrison, W. H., Borneman, W. S., Rigsby, L. L., O'Neill, M., Hanna, W. W. & Akin, D. E. (1992). Phenolic constituents of cell wall types of normal and brown midrib mutants of pearl millet (Pennisetum glaucum(L) R Br) in relation to wall biodegradability. Journal of the Science of Food and Agriculture 59, 211216.CrossRefGoogle Scholar
Heald, P. J. (1952). The assessment of glucose-containing substances in rumen micro-organisms during a digestion cycle in sheep. British Journal of Nutrition 5, 8493.CrossRefGoogle Scholar
Hegarty, M. P., Court, R. D., Christie, G. S. & Lee, C.P. (1976). Mimosine in Leucaena leucocephala is metabolised to a goitrogen in ruminants. Australian Veterinary Journal 52, 490.CrossRefGoogle Scholar
Henneberg, W. (1919). [The ruminal and gut flora of sheep.] Berliner Klinische Wochenschrift 56, 693694.Google Scholar
Henrissat, B. & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid similarities. Biochemical Journal 293, 781788.CrossRefGoogle Scholar
Hino, T. (1983). Influence of hydrogen on the fermentation in rumen protozoa, Entodinium species. Japanese Journal of Zootechnical Science 54, 320328.Google Scholar
Hobson, P. N. & Jouany, J.-P. (1988). Models, mathematical and biological, of the rumen function. In The Rumen Microbial Ecosystem, pp. 461511 [Hobson, P. N., editor]. London: Elsevier Applied Science.Google Scholar
Hume, I.D. & Warner, A. C. I. (1980). Evolution of microbial digestion in mammals. In Digestive Physiology and Metabolism in Ruminants (International Symposium on Ruminant Physiology 5, 1979), pp. 665684 [Ruckebush, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Hungate, R. E., Mah, R. A. & Simesen, M. (1961). Rates of production of individual volatile fatty acids in the rumen of lactating cows. Applied Microbiology 9, 554561.CrossRefGoogle ScholarPubMed
Huntington, G. B. (1997). Starch utilization by ruminants: from basics to the bunk. Journal of Animal Science 75, 852867.CrossRefGoogle Scholar
Iiyama, K., Lam, T. B. T. & Stone, B. A. (1994). Covalent cross-links in the cell wall. Plant Physiology 104, 315320.CrossRefGoogle ScholarPubMed
James, L. F., Allison, M. J. & Littledike, E. T. (1975). Production and modification of toxic substances in the rumen. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1974). pp. 576590 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Jenkins, T. C. (1993). Lipid metabolism in the rumen. Journal of Dairy Science 76, 38513863.CrossRefGoogle ScholarPubMed
Johnson, D. E., Abo-Omar, J. S., Saa, C. F. & Carmean, B. R. (1994). Persistence of methane suppression by propionate enhancers in cattle diets. In Energy Metabolism of Farm Animals (EAAP Publication no. 76). pp. 339342 [Aguilera, J.F., editor]. Granada, Spain: CSIC.Google Scholar
Jones, R. J. (1981). Does ruminal metabolism of mimosine explain the absence of Leucaena toxicity in Hawaii? Australian Veterinary Journal 57, 55.CrossRefGoogle ScholarPubMed
Jones, R. J. (1994). Management of anti-nutritive factors—with special reference to leucaena. In Forage Tree Legumes in Tropical Agriculture, pp. 216231 [Gutteridge, R. C. and Shelton, H.M., editors]. Wallingford: CAB International.Google Scholar
Jones, R. J. & Lowry, J. B. (1984). Australian goats detoxify the goitrogen 3-hydroxy-4(IH)pyridone (DHP) after rumen infusion from an Indonesian goat. Experientia 40, 14331436.CrossRefGoogle Scholar
Kaufmann, W. (1976). Influence of the composition of the ration and the feeding frequency on pH-regulation in the rumen. Livestock Production Science 3, 103114.CrossRefGoogle Scholar
Kaufmann, W., Hagemeister, H. & Dirksen, G. (1980). Adaptation to changes in dietary composition, level and frequency of feeding. In Digestive Physiology and Metabolism in Ruminants (International Symposium on Ruminant Physiology 5, 1979). pp. 587602 [Ruckebush, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Kiessling, K-H., Pettersson, H., Sandholm, K. & Olsen, M. (1984). Metabolism of aflatoxin, ochratoxin, zearalenone and three trichothecenes by intact rumen fluid, rumen protozoa and rumen bacteria. Applied and Environmental Microbiology 47, 10701073.CrossRefGoogle ScholarPubMed
Kirchgessner, M., Windisch, W. & Muller, H. L. (1995). Nutritional factors for the quantification of methane production. In Ruminant Physiology: Digestion, Metabolism. Growth and Reproduction, pp. 333345 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Klieve, A. V. & Bauchop, T. (1988). Morphological diversity of ruminal bacteriophages fromsheep and cattle. Applied and Environmental Microbiology 54, 16371641.CrossRefGoogle Scholar
Klieve, A. V. & Swain, S. A. (1993). Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry. Applied and Environmental Microbiology 59, 22992303.CrossRefGoogle ScholarPubMed
Klieve, A. V., Swain, R. A. & Nolan, J. V. (1996). Bacteriophages in the rumen; types present, population size and implications for the efficiency of feed utilization. Proceedings of the Australian Society of Animal Production 21, 9294.Google Scholar
Klusmeyer, T. H. & Clark, J. H. (1991). Effects of dietary fat and protein on fatty acid flow to the duodenum and in milk produced by dairy cows. Journal of Dairy Science 74, 3055.CrossRefGoogle Scholar
Krause, D. O.& Russell, J. B. (1996). How many ruminal bacteria are there? Journal of Dairy Science 79, 14671475.CrossRefGoogle Scholar
Lam, T. B.-T., Iiyama, K. & Stone, B. A. (1990). Primary and secondary walls of grasses and other forage plants: taxonomic and structural considerations. In Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 4369 [Akin, D. E., Ljungdahl, L. G., Wilson, J. R. and Harris, P. J., editors]. New York: Elsevier.Google Scholar
Lebzien, P., Giesecke, D., Wiesmayr, S. & Rohr, K. (1993). [Measurement of microbial protein synthesis in the rumen of cows by determinins 15N in duodenal digesta and isolating allantoin from milk. Journal of Animal Physiology and Animal Nutrition 70, 8288.CrossRefGoogle Scholar
Leng, R. A. (1970). Formation and production of volatile fatty acids in the rumen. In Physiology of Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology3, 1969), pp. 406421 [Phillipson, A.T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Lewis, D. (1951). The metabolism of nitrate and nitrite in the sheep. I. The reduction of nitrate in the rumen of the sheep. Biochemical Journal 48, 175180.CrossRefGoogle Scholar
Lindsay, D. B. (1970). Carbohydrate metabolism in ruminants. In Physiology of Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 3. 1969), pp. 438451 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Ling, J. R. & Armstead,, I. P. (1995). The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. Journal of Applied Bacteriology 78, 116124.CrossRefGoogle ScholarPubMed
Lough, A. K. (1970). Aspects of lipid digestion in the ruminant. In Physiology of Digestion and Metabolism in the Ruminant (lnternational Symposium on Ruminant Physiology 3, 1969). pp. 519528 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Low, S. G., Jephcott, S. B. & Bryden, W. L. (1994). Weaner illthrift of cattle grazing signal grass (Brachiaria decumbens) in Papua New Guinea. In Plant Associated Toxins, pp. 567571 [Colegate, S. M. and Darling, P. R., editors] Wallingford, UK: CAB International.Google Scholar
MacRae, J. C. (1975). The use of re-entrant cannulae to partition digestion function within the gastro-intestinal tract of ruminants. In Digestion and Metabolism in the Ruminant (lnternational Symposium on Ruminant Physiology 4, 1974). pp. 261276 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Maczulac, A. E., Dehority, B. A. & Palmquist, D. L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Physiology 42, 856862.CrossRefGoogle Scholar
Maeng, W. J. & Baldwin, R. L. (1976). Factors influencing rumen microbial growth rates and yields: effect of amino acid additions to a purified diet with nitrogen from urea. Journal of Dairy Science 59, 648655.CrossRefGoogle ScholarPubMed
Mangan, J. L. (1972). Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalburmin and the release and metabolism of free amino acids. British Journal of Nutrition 27, 261283.CrossRefGoogle ScholarPubMed
Mangan, J. L. (1988). Nutritional effects of tannins in animal feeds. Nutrition Research Reviews 1, 209231.CrossRefGoogle ScholarPubMed
Martin, S. A. (1994). Nutrient transport by ruminal bacteria: a review. Journal of Animal Science 72, 30193031.CrossRefGoogle ScholarPubMed
Martin, S. A. & Nisbet, D. J. (1992). Effect of direct-fed microbials on rumen microbial fermentation. Journal of Dairy Science 75, 17361744.CrossRefGoogle ScholarPubMed
Mathison, G. W. & Milligan, L. P. (1971). Nitrogen metabolism in sheep. British Journal of Nutrition 25, 351366.CrossRefGoogle ScholarPubMed
McAllister, J. A., Bae, H. D., Jones, G. A. & Cheng, K. J. (1994). Microbial attachment and feed digestion in the rumen. Journal of Animal Science 72, 3004–3018.CrossRefGoogle ScholarPubMed
McDonald, I. W. (1948). The absorption of ammonia from the rumen of the sheep. Biochemical Journal 42, 584–587.CrossRefGoogle ScholarPubMed
McDonald, I. W. (1952). The role of ammonia in ruminal digestion of protein. Biochemical Journal 51, 8690.CrossRefGoogle ScholarPubMed
McDonald, I. W. (1954). The extent of conversion of food protein to microbial protein in the rumen of the sheep. Biochemical Journal 56. 120125.CrossRefGoogle ScholarPubMed
McSweeny, C. S., Allison, M. J. & Mackie, R. I. (1993). Amino acid utilization by the ruminal bacterium Synergistes jonesii strain 78–1. Archives of Microbiology 159, 131135.Google ScholarPubMed
McSweeney, C. S., Mackie, R. I. & White, B. A. (1994). Transport and intracellular metabolism of major feed compounds by ruminal bacteria: the potential for metabolic manipulation. Australian Journal of Agricultural Research 45, 731756.CrossRefGoogle Scholar
Mehansho, H., Butler, L. G. & Carlson, D. M. (1987). Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annual Review of Nutrition 7, 423440.CrossRefGoogle ScholarPubMed
Mehrez, A. Z. & Ørskov, E. R. (1977). A study of the artificial fibre bag technique for determining the digestibility of feeds in the rumen. Journal of Agricultural Science 88, 645650.CrossRefGoogle Scholar
Miles, C. O., Wilkins, A. L., Erasmus, G. L. & Kellerman, T. S. (1994 a).Photosensitivity in South Africa. VIII. Ovine metabolism of Tribulus terrestris saponins during experimentally induced geeldikkop. Onderstepoort Journal of Veterinary Research 61, 351359.Google ScholarPubMed
Miles, C. 0., Wilkins, A. L., Erasmus, G. L., Kellerman, T. S. & Coetzer, J. A. W. (1994 b). Photosensitivity in South Africa. VII. Chemical composition of biliary crystals from a sheep with experimentally induced geeldikkop. Onderstepoort Journal of Veterinary Research 61, 215222.Google ScholarPubMed
Miller, T. L. (1995). Ecology of methane production and hydrogen sinks in the rumen. In Ruminant Physiology: Digestion, Metabolism Growth and Reproduction, pp. 317329 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Moir, R. J. (1968). Ruminant digestion and evolution. In Handbook of Physiology. Section 6: Alimentary canal, vol. V. Bile. Digestion; Ruminal Physiology, pp. 26732694 [Code, C.F., editor[. Washington: American Physiological Society.Google Scholar
Morant, S. V., Ridley, J. L, & Sutton, J. D. (1978). A model for the estimation of volatile fatty acid production in the rumen in non-steady-state conditions. British Journal of Nutrition 39, 451462.CrossRefGoogle Scholar
Morrison, M. (1996). Do ruminal bacteria exchange genetic material. Journal of Dairy Science 79, 14761486.CrossRefGoogle ScholarPubMed
Mountford, D. O. & Asher, R. A. (1985). Production and regulation of cellulase by two strains of the rumen anaerobic fungus Neocallimastix frontalis. Applied and Environmental Microbiology 49, 13141322.CrossRefGoogle Scholar
Nagaraja, T. G. & Chengappa, M. M. (1998). Liver abscesses in feedlot cattle. A review. Journal of Animal Science 76, 287298.CrossRefGoogle ScholarPubMed
Nolan, J. V. (1975). Quantitative models of nitrogen metabolism in sheep. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1974). pp. 416431 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). Dynamic aspects of ammonia and urea metabolism in sheep. British Journal of Nutrition 27, 177194.CrossRefGoogle ScholarPubMed
Norton, B. W., Mackintosh, J. B. & Armstrong, D. G. (1982). Urea synthesis and degradation in sheep given pelletedgrass diets containing flaked barley. British Journal of Nutrition 48, 249264.CrossRefGoogle ScholarPubMed
Obara, Y., Dellow, D. W. & Nolan, J. V. (1991). The influence of energy-rich supplements on nitrogen kinetics in ruminants. In Physiological Aspects of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology 7, 1989), pp. 515539 [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Ohajuruka, 0. A., Wu, Z. G. & Palmquist, D. L. (1991). Ruminal metabolism. fiber and protein digestion by lactating cows fed calcium soap or animal-vegetable fat. Journal of Dairy Science 74, 26012609.CrossRefGoogle ScholarPubMed
Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology 91, 249262.CrossRefGoogle ScholarPubMed
Ørskov, E. R. (1986). Starch digestion and utilization in ruminants. Journal of Animal Science 63, 16241633.CrossRefGoogle ScholarPubMed
Ørskov, E. R. & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science 92, 499503.CrossRefGoogle Scholar
Owens, F. N. & Goetsch, A. L. (1986). Digesta passage and microbial protein synthesis. In Control of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology 6. 1984). pp. 196223 [Milligan, L. P., Grovum, W.L. and Dobson, A., editors]. Englewood Cliffs, NJ: Pentice-Hall.Google Scholar
Owens, F. N., Secrist, D. S., Hill, W. J. & Gill, D. R. (1998). Acidosis in cattle: A review. Journal of Animal Science 76, 275286.CrossRefGoogle ScholarPubMed
Palmquist, D. L. (1988). The feeding value of fats. In Feed Science, pp. 293311 [Ørskov, E. R., editor]. Amsterdam: Elsevier.Google Scholar
Peters, R. A., Wakelin, R. W., Buffa, P. & Thomas, L. C. (1953). Biochemistry of fluoroacetate poisoning. The isolation and some properties of the fluorotricarboxylic acid inhibitor of citrate metabolism. Proceedings of the Royal Society, B 140, 497507.Google ScholarPubMed
Rasmussen, M. A. & Anderson, R. C. (1998). Dissimilatory metabolism by ruminal microbes: impact on ruminant toxicoses. In Toxic Plants and Other Natural Toxicants, pp. 7377 [Garland, T. and Barr, A. C., editors]. Wallingford: CAB International.Google Scholar
Rechkemmer, G., Gäbel, Diernaes, L., Sehested, J., Møller, P. D. & von Engelhardt, W. (1995). Transport of short chain fatty acids in the forestomach and hindgut. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, pp.95116 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Reed, J. D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. Journal of Animal Science 73, 15161528.CrossRefGoogle ScholarPubMed
Reiser, R. (1951). Hydrogenation of polyunsaturated fatty acids by the ruminant. Federation Proceedings 10, 236.Google Scholar
Ritchie, A. E. I., Robinson, I. M. & Allison, M. J. (1970). Rumen bacteriophage: survey of morphological types. In Microscopie Electronique, pp. 333334 [Favard, P., editor]. Paris: Société Francaise de Microscopie Electronique.Google Scholar
Robinson, P. H., Fadel, J. G. & Ivan, M. (1996). Critical evaluation of diaminopimelic acid and ribonucleic acid as markers to estimate rumen pools and duodenal flows of bacterial and protozoal nitrogen. Canadian Journal of Animal Science 76, 587597.CrossRefGoogle Scholar
Rowe, J. B., Brown, G., Ralph, I. G., Ferguson, J. & Wallace, J. F. (1989). Supplementary feeding of young Merino sheep, grazing wheat stubble, with different amounts of lupin, oat or barley grain. Australian Journal of Experimental Agriculture 29, 2935.CrossRefGoogle Scholar
Rowe, J. B. & Pethick, D. W. (1994). Starch digestion in ruminants—problems, solutions and opportunities. Proceedings of the Nutrition Society of Australia 18, 4052.Google Scholar
Russell, J. B. & Chow, J. M. (1993). Another theory for the action of ruminal buffer salts: decreased starch fermentation and propionate production. Journal of Dairy Science 76, 826830.CrossRefGoogle ScholarPubMed
Russell, J. B., Onodera, R. & Hino, T. (1991). Ruminal protein fermentation: new perspectives on previous contradictions. In Physiological Aspects of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology 7, 1989). pp. 681697 [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Russell, J. B., Strobel, H. J. & Martin, S. A. (1990). Strategies of nutrient transport by ruminal bacteria. Journal of Dairy Science 73, 29963012.CrossRefGoogle ScholarPubMed
Russell, J. B. & Wilson, D. B. (1988). Potential opportunities and problems for genetically altered rumen microorganisms. Journal of Nutrition 118, 271279.CrossRefGoogle ScholarPubMed
Russell, J. B. & Wilson, D. B. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH. Journal of Dairy Science 79, 15031509.CrossRefGoogle ScholarPubMed
Sauvant, D. & van Milgen, J. (1995). Dynamic aspects of carbohydrate and protein breakdown and the associated microbial matter synthesis. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, pp. 7191 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Scott, T. W., Cook, L. J., Ferguson, K. A., McDonald, I. W., Buchanan, R. A. & Loftus Hills, G. (1970). Production of poly-unsaturated milk fat in domestic ruminants. Australian Journal of Science 32, 291293.Google Scholar
Scott, T. W., Cook, L. J. & Mills, S. C. (1971). Protection of dietary polyunsaturated fatty acids against microbial hydrogenation in ruminants. Journal of the American Oil Chemists' Sociery 48, 358364.CrossRefGoogle Scholar
Sehested, J., Basse, A., Andersen, J. B., Diermæs, L., Møller, P. D., Skadhauge, E. & Aaes, O. (1997). Feed-induced changes in transport across the rumen epithelium. Comparative Biochemistry and Physiology 118A, 385386.CrossRefGoogle Scholar
Shorland, F. B., Weenink, R. O., Johns, A. T. & McDonald, I. R. C. (1957). The effect of sheep-rumen contents on unsaturated fatty acids. Biochemical Journal 67, 328333.CrossRefGoogle ScholarPubMed
Smith, R. H. (1975). Nitrogen metabolism in the rumen and the composition and nutritive value of nitrogen compounds entering the duodenum. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4, 1974), pp. 399415 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. Journal of animal Science 70, 3562–3517.CrossRefGoogle ScholarPubMed
Stangassinger, M., Chen, X. B., Lindbergh, J. E. & Giesecke, D. (1995). Metabolism of purines in relation to microbial production. In Ruminant Physiology: Digestion. Metabolism, Growth and Reproduction, pp. 387408 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Stevens, C. E. (1970). Fatty acid transport through the rumen epithelium. In Physiology of Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 3, 1969), pp. 101112 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Stewart, C. S., Fèvre, M. & Prins, R. A. (1995). Factors affecting fermentation and polymer degradation by anaerobic fungi and the potential for manipulation of rumen function. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction, pp. 251270 [Engelhardt, W. V., Leonhard-Marek, S., Breves, G. and Giesecke, D., editors]. Stuttgart: Ferdinand Enke Verlag.Google Scholar
Stumm, C. K., Gijzen, H. J. & Vogels, G. D. (1982). Association of methanogenic bacteria with ovine rumen ciliates. British Journal of Nutrition 47, 9599.CrossRefGoogle ScholarPubMed
Susmel, P. & Stefanon, B. (1993). Aspects of lignin degradation by rumen microorganisms. Journal of Biotechnology 30, 141148.CrossRefGoogle Scholar
Sutton, J. D. (1985). Digestion and absorption of energy substrates in the lactating cow. Journal of Dairy Science 68, 33763393.CrossRefGoogle Scholar
Swain, R. A., Nolan, J. V. & Klieve, A. V. (1996). Natural variability and diurnal fluctuations within the bacteriophage population of the rumen. Applied and Environmental Microbiology 62, 994997.CrossRefGoogle ScholarPubMed
Teather, R. M. (1985). Application of gene manipulation to rumen microflora. Canadian Journal of Animal Science 65, 563574.CrossRefGoogle Scholar
Theodorou, M. K. & France, J. (1993). Rumen microorganisms and their interactions. In Quantitative Aspects of Ruminant Digestion and Metabolism, pp. 145163 [Forbes, J. M. and France, J., editors]. Wallingford: CAB International.Google Scholar
Theodorou, M. K., Zhu, W. Y., Rickers, A., Nielsen, B. B., Gull, K. & Trinci, A. P. J. (1996). Biochemistry and ecology of anaerobic fungi. In The Mycora. VI. Humun and Animal Relationships, pp. 265295 [Howard, D.H. and Miller, J.D., editors]. Berlin: Springer Verlag.CrossRefGoogle Scholar
Thomiley, G. R., Boyce, M. D. & Rowe, J. B. (1994). Dose of virginiamycin required to control lactic acid accumulation in rumen and caecal digesta. Proceedings of the Australian Sociery of Animal Production 20, 448.Google Scholar
Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M. I., Nielsen, B. B., Rickers, A. & Theodorou, M. K. (1994). Anaerobic fungi in herbivorous animals. Mycological Research 98, 129152.CrossRefGoogle Scholar
Ushida, K., Jouany, J. P. & Demeyer, D. I. (1991). Effects of presence or absence of rumen protozoa on the efficiency of utilization of concentrate and fibrous feeds. In Physiological Aspects of Digestion and Metabolism in Ruminants (International Symposium on Ruminant Physiology 7, 1989), pp. 625654 [Tsuda, T., Sasaki, Y. and Kawashima, R., editors]. New York: Academic Ress.CrossRefGoogle Scholar
Ushida, K., Umeda, M., Kishigami, N. & Kojima, Y. (1992). Effect of medium chain and long chain fatty acid calcium salts on rumen microorganisms and fibre digestion in sheep. Animal Science and Technology (Japan) 63, 591597.Google Scholar
Virtanen, A. I. (1966). Milk production of cows on protein free diets. Science 153, 16031604.CrossRefGoogle Scholar
Walker, D.J. (1965). Energy metabolism and rumen microorganisms. In Physiology of Digestion in the Ruminant (International Symposium on Ruminant Physiology 2, 1964), pp. 296310 [Dougherty, R. W., Allen, R. S., Burroughs, W., Jacobson, N. L. and McGilliard, A. D., editors]. Washington: Butterworths.Google Scholar
Wallace, R. J. (1994). Ruminal microbiology, biotechnology and ruminant nutrition: progress and problems. Journal of Animal Science 72, 29923003.CrossRefGoogle Scholar
Wallace, R. J. (1996). Ruminal microbial metabolism of peptides and amino acids. Journal of Nutrition 126, 1326S1334S.CrossRefGoogle ScholarPubMed
Wallace, R.J. (1997). Rumen microbiology and efficency of digestion: opportunities and impact of biotechnology. In Milk Composition, Producrion and Biotechnology, pp. 465487 [Welch, R. A. S., Bums, D. J. W., Davis, S. R., Popay, A. I. and Rosser, C. G., editors]. Wallingford: CAB International.Google Scholar
Wallace, R. J. & Cotta, M. A. (1988). Metabolism of nitrogen-containing compounds. In The Rumen Microbial Ecosystem, pp. 217249 [Hobson, P. N., editor]. London: Elsevier Applied Science.Google Scholar
Westlake, K., Mackie, R. I. & Dutton, M. F. (1987 a). T-2 toxin metabolism by ruminal bacteria and its effect on their growth. Applied and Environmental Microbiology 53, 587592.CrossRefGoogle ScholarPubMed
Westlake, K., Mackie, R. I. & Dutton, M. F. (1987 b).Effects of several mycotoxins on specific growth rate of Butyrivibrio fibrisolvens and toxin degradation in vitro. Applied and Environmental Microbiology 53, 613614.CrossRefGoogle ScholarPubMed
Westlake, K., Mackie, R. I. & Dutton, M. F. (1989).In vitro metabolism of mycotoxins by bacterial, protozoal and ovine ruminal fluid preparations. Animal Feed Science and Technology 25, 169178.CrossRefGoogle Scholar
Weston, R. H. & Hogan, J. P. (1968).The digestion of pasture plants by sheep. I. Ruminal production of volatile fatty acids by sheep offered diets of ryegrass and forage oats. Australian Journal of Agricultural Research 19, 419432.CrossRefGoogle Scholar
Williams, A. G., Withers, S. E. & Joblin, K. N. (1991). Xylanolysis by cocultures of the rumen fungus Neocallimastix frontalis and ruminal bacteria. Letters in Applied Microbiology 12, 232235.CrossRefGoogle Scholar
Williams, P. E. V., Walker, A. & MacRae, J. C. (1990). Rumen probiosis: the effects of addition of yeast culture (viable yeast (Saccharomyces cerevisiae) plus growth medium) on duodenal protein flow in wether sheep. Proceedings of the Nutrition Society 49, 128A.Google Scholar
Wolfe, R. S. (1971). Microbial formation of methane. Advances in Microbial Physiology 6, 107146.CrossRefGoogle ScholarPubMed
Wolin, M. J. (1975). Interactions between the bacterial species of the rumen. In Digestion and Metabolism in the Ruminant (International Symposium on Ruminant Physiology 4. 1974), pp. 135148 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Wood, T. M., Wilson, C. A., McCrae, S. I. & Joblin, K. N. (1986). A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiology Letters 34, 3740.CrossRefGoogle Scholar
Xiao, H., Marquardt, R. R., Frohlich, A. A., Phillips, G. D. & Vitti, T. G. (1991 a). Effect of a hay and a grain diet on the rate of hydrolysis of ochratoxin A in the rumen of sheep. Journal of Animal Science 69, 37063714.CrossRefGoogle Scholar
Xiao, H., Marquardt, R. R., Frohlich, A. A., Phillips, G. D. & Vitti, T. G. (1991 b). Effect of a hay and a grain diet on the bioavailability of ochratoxin A in the rumen of sheep. Journal of Animal Science 69, 37153723.CrossRefGoogle Scholar