Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T14:51:22.042Z Has data issue: false hasContentIssue false

Peptides in Human Nutrition

Published online by Cambridge University Press:  14 December 2007

George K. Grimble
Affiliation:
Department of Gastroenterology & Nutrition, Central Middlesex Hospital, Acton Lane, LondonNW10 7NS
David B. A. Silk
Affiliation:
Department of Gastroenterology & Nutrition, Central Middlesex Hospital, Acton Lane, LondonNW10 7NS
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Articles
Copyright
Copyright © The Nutrition Society 1989

References

REFERENCES

Adibi, S. A. (1971). Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. Journal of Clinical Investigation 50, 22662275.CrossRefGoogle ScholarPubMed
Adibi, S. A. & Krzysik, B. A. (1977). Effect of nephrectomy and enterectomy on plasma clearance of intravenously administered dipeptides in the rat. Clinical Science & Molecular Medicine 52, 205213.Google Scholar
Adibi, S. A. & Morse, E. L. (1977). The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum. Journal of Clinical Investigation 60, 10081016.CrossRefGoogle ScholarPubMed
Adibi, S. A. & Morse, E. L. (1982). Enrichment of glycine pool in plasma and tissues by glycine, di-, tri-, and tetraglycine. American Journal of Physiology 243, E413417.Google ScholarPubMed
Adler-Nissen, J. (1986 a). Enzymic Hydrolysis of Food Proteins. London: Elsevier Applied Science Publishers.Google Scholar
Adler-Nissen, J. (1986 b). Relationship of structure to taste of peptides and peptide mixtures. In Protein Tailoring For Food and Medical Uses, pp. 97122 [Feeney, R. E. and Whitaker, J. R., editors]. New York: Marcel Dekker Inc.Google Scholar
Albers, S., Amberger, I., Mangold, J., Pfaender, P. & Fürst, P. (1984). Das synthetische Dipeptid L-Alanyl-L-glutamin als Glutaminequelle in der parenteralen Ernährung. II. Der Einsatz des Peptides in der experimenteller Kalabolie (The synthetic dipeptide L-alanyl-L-glutamine as a glutamine source in parenteral nutrition. II. Utilization of dipeptides in experimental catabolism). Infusionstherapie 11, 5758.Google Scholar
Åqvist, S. & Wretlind, A. (1957). Pyrolidone carboxylic acid in enzymatic casein hydrolysates. Acta Physiologica Scandinavica 39, 147157.CrossRefGoogle Scholar
Askanazi, J., Carpentier, Y. A., Michelsen, C. B., Elwyn, D. M., Fürst, P., Kantrowitz, L. R., Gump, F. E. & Kinney, J. M. (1980). Muscule and plasma amino acids following injury. Annals of Surgery 192, 7885.CrossRefGoogle Scholar
Botbol, V. & Scornik, O. A. (1983). Peptide intermediates in the degradation of cellular proteins. Journal of Biological Chemistry 258, 19421949.CrossRefGoogle ScholarPubMed
Boyd, C. A. R. & Ward, M. R. (1982). A micro-electrode study of oligopeptide absorption by the small intestinal epithelium of Necturus maculosus. Journal of Physiology 324, 411428.CrossRefGoogle ScholarPubMed
Burston, D. & Matthews, D. M. (1984). The effects of sodium replacement on peptide uptake by the small intestine. In Nutrition for Special Needs in Infancy: Protein Hydrolysates, pp. 2335. [Lifshitz, F., editor]. New York: Marcel Dekker Inc.Google Scholar
Burston, D., Taylor, E. & Matthews, D. M. (1979). Intestinal handling of two tetrapeptides by rodent small intestine. Biochimica et Biophysica Acta 553, 175178.CrossRefGoogle ScholarPubMed
Burston, D., Wapnir, R. A.Taylor, E. & Matthews, D. M. (1982). Uptake of L-valyl-L-valine and glycyl-sarcosine by hamster jejunum in vitro. Clinical Science 62, 617626.CrossRefGoogle Scholar
Carone, F. A. & Peterson, D. R. (1980). Hydrolysis and transport of small peptides by the proximal tubule. American Journal of Physiology 238, F151158.Google ScholarPubMed
Chacko, A. & Cummings, J. H. (1988). Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut 29, 809815.CrossRefGoogle ScholarPubMed
Charpentier, C., Johnstone, R. A. W., Lemonnier, A., Myara, I., Rose, M. E. & Tuli, D. (1984). Analysis of dipetides in urine by gas chromatography/mass spectrometry: implications for collagen breakdown in iminodipeptiduria following the study of the dipeptides by electron impact and chemical ionization. Clinical Chimica Acta 138, 299308.CrossRefGoogle Scholar
Chataud, J., Desreumaux, S. & Cartwright, T. (1986a). Procédé de fabrication d'un hydrolysat enzymatique de proteéines riche en di- et tri-peptides, utilisable notamment en nutrition artificielle et en diététique (Process for the manufacture of an enzymic protein hydrolysate rich in dipeptides and tripeptides, which can be used especially in artificial nutrition and dietetics). French Patent 86, 17516.Google Scholar
Chataud, J., Desreumaux, S. & Cartwright, T. (1986b). Procédé de préparation d'un meélange peptidique, riche en di- et tri-peptides, utilisable notamment en nutrition artificielle et en diététique, mélange ainsi obtenu, et utilisation de ce mélange en nutrition artificielle et en diététique (Process for the preparation of a peptide mixture rich in dipeptides and tripeptides, which can be used especially in artificial nutrition and dietetics, the mixture thus obtained and the use of this mixture in artificial nutrition and dietetics). French Patent 86, 17515.Google Scholar
Chataud, J., Desreumaux, S. & Cartwright, T. (1988). Industrial scale production of di- and tripeptides. Proceedings of 8th International Biotechnology Symposium, Paris. p. 218, Paris: Société Français de Microbiologie.Google Scholar
Christensen, H. N. (1949). Conjugated amino acids in portal plasma of dogs after protein feeding. Biochemical Journal 44, 333335.Google ScholarPubMed
Christensen, H. N. (1950). Peptide wastage consequent to the infusion of two protein hydrolysates. Journal of Nutrition 42, 189193.CrossRefGoogle Scholar
Christensen, H. N., Wilber, P. B., Coyne, B. A. & Fisher, J. H. (1955). Effects of simultaneous or prior infusion of sugars on the fate of infused protein hydrolysates. Journal of Clinical Investigation 34, 8694.CrossRefGoogle ScholarPubMed
Chung, Y. C., Kim, Y. S., Shadchehr, A., Garrido, A., MacGregor, I. L. & Sleisinger, M. H. (1979). Protein digestion and absorption in human small intestine. Gastroenterology 76, 14151421.CrossRefGoogle ScholarPubMed
Clegg, K. M., Lim, C. L. & Manson, W. (1974). The structure of a bitter peptide derived from casein by digestion with papain. Journal of Dairy Research 41, 283287.CrossRefGoogle Scholar
Corbett, M. E., Scrimgeour, C. M. & Watt, P. W. (1987). Use of tert.-butyldimethylsilyl derivatives for gas chromatographic-mass spectrometric analysis of dipeptides. Journal of Chromatography 419, 263270.CrossRefGoogle ScholarPubMed
Curtis, K. J., Kim, Y. S., Perdomo, J. M., Silk, D. B. A. & Whitehead, J. S. (1978). Protein digestion and absorption in the rat. Journal of Physiology 274, 409419.CrossRefGoogle ScholarPubMed
Daabees, T. T. & Stegink, L. D. (1979). L-Alanyl-L-Tyrosine during total parenteral nutrition: infusion of 0-5 and 2-0 mmoles/kg/day in adult rats. Pediatric Research 13, 894899.CrossRefGoogle Scholar
Desnuelle, P. (1986). Chemistry and enzymology of pancreatic endopeptidases. In Molecular and Cellular Basis of Digestion, pp. 195211 [Desnuelle, P., Sjöström, H. and Norén, O., editors]. Amsterdam: Elsevier.Google Scholar
Dizdaroglu, M. & Simic, M. G. (1980). Separation of dipeptides by high resolution gas chromatography on a fused silica capillary column after trimethylsilylation. Analytical Biochemistry 108, 269273.CrossRefGoogle ScholarPubMed
Elman, R. (1947). Parenteral Alimentation in Surgery, With Special Reference to Proteins and Amino Acids. New York: Paul B. Hoeber Inc.Google Scholar
Fairclough, P. D., Hegarty, J. E., Silk, D. B. A. & Clark, M. L. (1980). A comparison of the absorption of two protein hydrolysates and their effects on water and electrolyte movements in the human jejunum. Gut 21, 829834.CrossRefGoogle ScholarPubMed
Faull, K. F., Schlesinger, P. & Halpern, B. (1976). The mass spectrometric identification of dipeptides in the urine of a patient suffering from chronic skin ulceration and oedema. Clinica Chimica Acta 70, 313321.CrossRefGoogle ScholarPubMed
Ferguson, A. & Watret, K. C. (1988). Cows' milk intolerance. Nutrition Research Reviews 1, 122.CrossRefGoogle ScholarPubMed
Filer, L. J. & Stegink, L. D. (1973). Safety of hydrolysates in parenteral nutrition. New England Journal of Medicine 289, 426427.CrossRefGoogle ScholarPubMed
Ford, C., Grimble, G. K., Halliday, D. & Silk, D. B. A. (1986). Gas chromatography-mass spectrometry analysis of dipeptides in nutritionally significant enzyme hydrolysates of ovalbumin and casein. Biochemical Society Transactions 14, 12911293.CrossRefGoogle Scholar
Fox, A. D., Kripke, S. A., De Paula, J., Berman, J. F., Settle, R. G. & Rombeau, J. L. (1988). Effect of glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. Journal of Parenteral & Enteral Nutrition 12, 325331.CrossRefGoogle ScholarPubMed
Freeman, H. J., Sleisinger, M. H. & Kim, Y. S. (1983). Human protein digestion and absorption: normal mechanisms and protein energy malnutrition. In Clinics in Gastroenterology, vol. 12 pp. 357378 [Sleisinger, M. H., editor] London: W. B. Saunders.Google Scholar
Fruton, J. S. (1982). Proteinase-catalysed synthesis of peptide bonds. Advances in Enzymology 53, 239306.Google Scholar
Fullbrook, P., Pawlett, D. & Parker, D. (1987). Protein plus. Food Processing 56 (12), 1113.Google Scholar
Fürst, P., Albers, S. & Stehle, P. (1987). Stress-induced intracellular glutamine depletion. The potential use of glutamine containing peptides in parenteral nutrition. In: Dipeptides as New Substrates in Nutrition Therapy, pp. 117136 [Adibi, S. A., Fekl, W. and Oehmke, M., editors]. Munich:Karger.Google Scholar
Galaske, R. G., van Liew, J. B. & Feld, L. G. (1979). Filtration and reabsorption of endogenous low-molecular-weight protein in the rat kidney. Kidney International 16, 394403.CrossRefGoogle ScholarPubMed
Ganapathy, V., Burckhardt, G. & Leibach, F. K. (1984). Characteristics of glycylsarcosine transport in rabbit intestinal brush-border membrane vesicles. Journal of Biological Chemistry 259, 89548959.CrossRefGoogle ScholarPubMed
Ganapathy, V., Burckhardt, G. & Leibach, F. H. (1985). Peptide transport in rabbit intestinal brush-border membrane vesicle studied with a potential-sensitive dye. Biochimica et Biophysica Acta 816, 234240.CrossRefGoogle ScholarPubMed
Ganapathy, V. & Leibach, F. K. (1983). Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Journal of Biological Chemistry 258, 1418914192.CrossRefGoogle ScholarPubMed
Ganapathy, V. & Leibach, F. K. (1985). Is intestinal transport energized by a proton gradient? American Journal of Physiology 249, G153G160.Google ScholarPubMed
Ganapathy, V., Mendicino, J. F. & Leibach, F. H. (1981). Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. Journal of Biological Chemistry 256, 118124.CrossRefGoogle ScholarPubMed
Gardner, M. L. G. (1984). Intestinal assimilation of intact peptides and proteins from the diet — a neglected field. Biological Reviews 59, 289331.CrossRefGoogle Scholar
Gardner, M. L. G. (1985). Production of pharmacologically active peptides from foods in the gut. In Food and the Gut, pp. 121134 [Hunter, J. O. and Jones, Alun V., editors]. London: Balliere Tindall.Google Scholar
Gardner, M. L. G., Lindblad, B. S., Burston, D. & Matthews, D. M. (1983). Transmucosal passage of intact peptides in the guinea-pig small intestine in vivo: a reappraisal. Clinical Science 64, 433439.CrossRefGoogle ScholarPubMed
Gibson, G. R., Cummings, J. H. & MacFarlane, G. T. (1988 a). Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulphate reduction and methanogenesis by mixed populations of human gut bacteria. Applied and Environmental Microbiology 54, 27502755.CrossRefGoogle Scholar
Gibson, G. R., MacFarlane, G. T. & Cummings, J. H. (1988 b). Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. Journal of Applied Bacteriology 65, 103111.CrossRefGoogle ScholarPubMed
Goldberg, L. & Wretlind, K. A. J. (1947). The toxicity of a dialysed casein digest. Acta Physiologica Scandinavica 14, 1926.CrossRefGoogle ScholarPubMed
Gray, G. M. & Cooper, H. L. (1971). Protein digestion and absorption. Gastroenterology 61, 535544.CrossRefGoogle ScholarPubMed
Grimble, G. K. (1989). Leading article: Fibre, fermentation, flora and flatus. Gut 30, 613.CrossRefGoogle Scholar
Grimble, G. K. & Adam, A. M. (1989). HPLC analysis of sugars in clinical research. Chromatography and Analysis 2, 58.Google Scholar
Grimble, G. K., Keohane, P. P., Higgins, B. E., Kaminski, M. V. & Silk, D. B. A. (1986). Effect of peptide chain-length on amino acid and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum. Clinical Science 71, 6569.CrossRefGoogle ScholarPubMed
Grimble, G., Preedy, V., Garlick, P. & Silk, D. B. A. (1989). Trophic effects of dietary peptides on the rat intestinal tract. Journal of Parenteral & Enteral Nutrition 13, Suppl., 6S.Google Scholar
Grimble, G. K., Raimundo, A. H., Rees, R. G., Hunjan, M. K. & Silk, D. B. A. (1988). Parenteral utilisation of a purified short-chain enzymic hydrolysate of ovalbumin in man. Journal of Parenteral & Enteral Nutrition 12, Suppl., 15S.Google Scholar
Grimble, G. K., Rees, R. G., Keohane, P. P., Cartwright, T., Desreumaux, M. & Silk, D. B. A. (1987). The effect of peptide chain-length on absorption of egg-protein hydrolysates in the normal human jejunum. Gastroenterology 92, 136142.CrossRefGoogle ScholarPubMed
Grimble, G. K. & Silk, D. B. A. (1986). The optimum form of dietary nitrogen in gastrointestinal disease: proteins, peptides or amino acids. Verhandlungen der Deutschen Gesellschaft für Innere Medizin 92, 674685.CrossRefGoogle ScholarPubMed
Grimble, G. K. & Silk, D. B. A. (1989). Milk protein and enteral and parenteral feeding in disease. In Milk Proteins: Nutritional, Functional and Technological Aspects. pp. 270282 [Barth, C. A. and Schlimme, E., editors]. Darmstadt: Steinkopff Verlag.CrossRefGoogle Scholar
Guandalini, S. & Rubino, A. (1982). Development of dipeptide transport in the intestinal mucosa of rabbits. Pediatric Research 16, 99103.CrossRefGoogle ScholarPubMed
Hammarkvist, F., Wernerman, J., Ali, R., von der Decken, A. & Vinnars, E. (1988). Effects of glutamine supplementation to total parenteral nutrition after elective abdominal surgery. Clinical Nutrition 7, Suppl., 36.Google Scholar
Hammarkvist, F., Wernerman, J. & Vinnars, E. (1989). Alpha-ketoglutarate added to post-operative total parenteral nutrition improves nitrogen balance and reduces the loss of free glutamine in skeletal muscle. Journal of Parenteral & Enteral Nutrition 13, Suppl., 6S.Google Scholar
Hegarty, J. E., Fairclough, P. D., Moriarty, K. J., Kelly, M. J. & Clark, M. L. (1982). Effects of concentration on in vivo absorption of a peptide containing protein hydrolysate. Gut. 23, 304309.CrossRefGoogle ScholarPubMed
Heller, L., Becher, A., Beck, A. & Muller, F. (1967). Zur Frage der Verwertung infundierter Aminosäurenlösung (On the utilization of infused amino acid solutions). Klinische Wochenschrift 45, 317318.CrossRefGoogle Scholar
Hueckel, H. J. & Rogers, Q. R. (1970). Urinary excretion of hydroxyproline-containing peptides in man, rat, hamster, dog and monkey after feeding gelatin. Comparative Biochemistry & Physiology 32, 716.CrossRefGoogle ScholarPubMed
Itoh, H., Kishi, T. & Chibata, I. (1973). Comparative effects of casein and amino acid mixture simulating casein on growth and food intake in rats. Journal of Nutrition 103, 17091715.CrossRefGoogle Scholar
Jakubke, H. D., Kuhl, P. & Konnecke, A. (1985). Grundprinzipien der proteasekatalysierten Knüpfung der Peptidbundung. (Theory of protease-catalysed peptide bond synthesis). Angewandte Chemie 97, 7989.CrossRefGoogle Scholar
Jepson, M. M., Bates, P. C., Broadbent, P., Pell, J. M. & Millward, D. J. (1988). Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. American Journal of Physiology 255, E166–E172.Google ScholarPubMed
Kenny, A. J. & Maroux, S. (1982). Topology of microvillar membrane hydrolases of kidney and intestine. Physiological Reviews 62, 91128.CrossRefGoogle ScholarPubMed
Keohane, P. P., Grimble, G. K., Brown, B., Spiller, R. C. & Silk, D. B. A. (1985). Influence of protein composition and hydrolysis method on intestinal absorption of protein in man. Gut 26, 907913.CrossRefGoogle ScholarPubMed
Kilara, A. (1985). Enzyme-modified protein food ingredients. Process Biochemistry 20, 149157.Google Scholar
Knights, R. J. (1984). Processing and evaluation of the antigenicity of protein hydrolysates. In Nutrition for Special Needs in Infancy: Protein Hydrolysates, pp. 105115 [Lifshitz, F., editor] New York: Marcel Dekker.Google Scholar
Konopinska, D. & Muzalewski, F. (1983). Proteolytic enzymes in peptide synthesis. Molecular & Cellular Biochemistry 51, 165175.CrossRefGoogle ScholarPubMed
Koruda, M. J., Rolandelli, R. H., Settle, R. G., Saul, S. H. & Rombeau, J. L. (1986). The effect of a pectin-supplemented elemental diet on intestinal adaptation to massive small bowel resection. Journal of Parenteral & Enteral Nutrition 10, 343350.CrossRefGoogle ScholarPubMed
Krutzsch, H. C. (1983). Polypeptide sequencing with dipeptidyl peptidases. Methods in Enzymology 91, 511524.CrossRefGoogle ScholarPubMed
Krzysik, B. A. & Adibi, S. A. (1979). Comparison of metabolism of glycine injected intravenously in free and dipeptide forms. Metabolism 28, 12111217.CrossRefGoogle ScholarPubMed
Leander, U., Fürst, P., Vesterberg, K. & Vinnars, E. (1985). Nitrogen sparing effect of Ornicetil® in the immediate postoperative state: clinical biochemistry and nitrogen balance. Clinical Nutrition 4, 4351.CrossRefGoogle ScholarPubMed
Levenson, S. M. & Fisher, H. (1974). Amino acids and protein hydrolysates; calories: nitrogen: disease and injury relationships. In Total Parenteral Nutrition pp. 92143 [White, P. L., Nagy, M. E. and Fletcher, D. C., editors]. Acton, MA: Publishing Sciences Group Inc.Google Scholar
Levenson, S. M., Hopkins, Smith B., Waldron, M., Canham, J. E. & Seifter, E. (1984). Early history of parenteral nutrition. Federation Proceedings 43, 13911406.Google ScholarPubMed
Lidstrom, F. & Wretlind, K. A. J. (1952). The effect of intravenous administration of a dialysed, enzymic casein hydrolysate (Aminosol) on the serum concentration and on the urinary excretion of amino acids. Scandinavian Journal of Clinical & Laboratory Investigation 4, 167178.CrossRefGoogle Scholar
Lochs, H., Morse, E. L. & Adibi, S. A. (1986). Mechanism of hepatic assimilation of dipeptides. Transport versus hydrolysis. Journal of Biological Chemistry 261, 1497614981.CrossRefGoogle ScholarPubMed
Lochs, H., Williams, P. E., Morse, E. L., Abumrad, N. N. & Adibi, S. A. (1988). Metabolism of dipeptides and their constituent amino acids by liver, gut, kidney and muscle. American Journal of Physiology 254, E588–E594.Google ScholarPubMed
Long, C. L., Zikria, J. M., Kinney, J. M. & Geiger, J. W. (1974). Comparison of fibrin hydrolysates and crystalline amino acid solutions in parenteral nutrition. American Journal of Clinical Nutrition 27, 163174.CrossRefGoogle ScholarPubMed
Lowry, M., Hall, D. E. & Brosnan, J. T. (1985). Metabolism of glycine- and hydroxyproline-containing peptides by the isolated perfused rat kidney. Biochemical Journal 229, 545549.CrossRefGoogle ScholarPubMed
Lyster, R. L. J. (1972). Reviews of the progress of dairy science. C. Chemistry of milk proteins. Journal of Dairy Research 39, 279318.CrossRefGoogle ScholarPubMed
Maack, T., Johnson, V., Kau, S. T., Figueiredo, J. & Sigulem, D. (1979). Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney International 16, 251270.CrossRefGoogle ScholarPubMed
MacFarlane, G. T. & Allison, C. (1986). Utilisation of protein by human gut bacteria. FEMS Microbiology Ecology 38, 1924.CrossRefGoogle Scholar
MacFarlane, G. T., Cummings, J. H. & Allison, C. (1986). Protein degradation by human intestinal bacteria. Journal of General Microbiology 132, 16471656.Google ScholarPubMed
McIntyre, P. B., Fitchew, M. & Lennard-Jones, J. E. (1986). Patients with a high ileostomy do not need a special diet. Gastroenterology 91, 2533.CrossRefGoogle Scholar
Madden, S. C., Woods, R. R., Shull, F. W. & Whipple, G. H. (1944). Amino acid mixtures effective parenterally for long continued plasma protein production. Casein digests compared. Journal of Experimental Medicine 79, 607624.CrossRefGoogle ScholarPubMed
Magnusson, I., Kihlberg, R., Eckman, L. & Wahren, J. (1987 b). Utilization of intravenously administered N-acetyl-L-glutamine in healthy man. Clinical Nutrition 6, Suppl., 31.Google Scholar
Magnusson, K., Alvestrand, A., Ekman, L. & Wahren, J. (1987 a). Protein and amino acid metabolism of skeletal muscle during starvation. Clinical Nutrition 6, Suppl., 62 Abstr.Google Scholar
Matoba, T. & Hata, T. (1972). Relationship between bitterness of peptides and their chemical structures. Agricultural and Biological Chemistry 36, 14231431.CrossRefGoogle Scholar
Matthews, D. M. (1975 a). Intestinal absorption of peptides. Physiological Reviews 55, 537608.CrossRefGoogle ScholarPubMed
Matthews, D. M. (1975 b). Absorption of peptides by mammalian intestine. In Peptide Transport in Protein Nutrition, pp. 61146 [Matthews, D. M. and Payne, J. W., editors]. Amsterdam: North-Holland Publishing Company.Google Scholar
Matthews, D. M. (1984). Absorption of peptides, amino acids and their methylated derivatives. In Aspartame: Physiology and Biochemistry, pp. 2946 [Stegink, L. D. and Filer, L. J., editors]. New York: Marcel Dekker Inc.Google Scholar
Matthews, D. M. & Burston, D. (1983). Uptake of L-leucyl-L-leucine and glycylsarcosine by hamster jejunum in vitro. Clinical Science 65, 177184.CrossRefGoogle ScholarPubMed
Matthews, D. M. & Burston, D. (1984 a). Uptake of a series of neutral dipeptides including L-alanyl-L-alanine, glycylglycine and glycylsarcosine by hamster jejunum in vitro. Clinical Science 67, 541549.CrossRefGoogle ScholarPubMed
Matthews, D. M. & Burston, D. (1984 b). Absorption of proteins and their digestion products in early life. In Nutrition for Special Needs in Infancy: Protein Hydrolysates, pp. 1322 [Lifshitz, F., editor]. New York: Marcel Dekker Inc.Google Scholar
Matthews, D. M. & Payne, J. W. (1980). Transmembrane transport of small peptides. Current Topics In Membranes and Transport 14, 331425.CrossRefGoogle Scholar
Miller, P. M., Burston, D., Brueton, M. J. & Matthews, D. M. (1984). Kinetics of uptake of L-leucine and glycylsarcosine into normal and protein malnourished young rat jejunum. Pediatric Research 18, 504508.CrossRefGoogle ScholarPubMed
Miyamoto, Y., Ganapathy, V., Barlas, A., Neubert, K., Barth, A. & Leibach, F. H. (1987). Role of dipeptidyl peptidase IV in uptake of nitrogen from β-casomorphin in rabbit renal BBMV. American Journal of Physiology 252, F670F677.Google ScholarPubMed
Moriarty, K. J., Hegarty, J. E., Fairclough, P. D., Kelly, M. J., Clark, M. L. & Dawson, A. M. (1985). Relative nutritional value of whole protein, hydrolysed protein and free amino acids in man. Gut 26, 694699.CrossRefGoogle ScholarPubMed
Neuhauser, M. (1985). Utilisation of glycyl-L-tyrosine during long-term parenteral nutrition in the rat. Clinical Nutrition 4, Suppl., 124130.CrossRefGoogle Scholar
Newsholme, E. A., Crabtree, B. & Ardawi, M. S. M. (1985). Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Quarterly Journal of Experimental Physiology 70, 473489.CrossRefGoogle ScholarPubMed
Newsholme, E. A., Newsholme, P. & Curi, R. (1987). The role of the citric acid cycle in cells of the immune system and its importance in sepsis, trauma and burns. In Krebs' Critic Acid Cycle: Half a century and still turning. Biochemical Society Symposium no. 54, pp. 145161 [Kay, J. and Weitzman, P. D. J., editors]. London: The Biochemical Society.Google Scholar
Ney, K. H. (1978). Bitterkeit und Gelpermeationschromatographie von enzymatischen Proteinhydrolysaten (Bitterness and gel-filtration chromatography of enzymic protein hydrolysates). Fette Seifen Anstrichmittel 80, 323325.CrossRefGoogle Scholar
Ney, K. H. (1979). Bitterness of peptides: Amino acid composition and chain length. In Food Taste Chemistry, ACS Symposium Series No. 115, pp. 149173 [Boudreau, J. C., editor]. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Nicholson, J. A. & Peters, T. J. (1978). Subcellular distribution of hydrolase activities for glycine and leucine homopeptides in human jejunum. Clinical Science & Molecular Medicine 54, 205207.Google ScholarPubMed
Nicholson, J. A. & Peters, T. J. (1979). Subcellular localisation of peptidase activity in the human jejunum. European Journal of Clinical Investigation 9, 349354.CrossRefGoogle ScholarPubMed
Patel, D., Anderson, G. H. & Jeejeebhoy, K. N. (1973). Amino acid adequacy of parenteral casein hydrolysate and oral cottage cheese in patients with gastrointestinal disease as measured by nitrogen balance and blood aminogram. Gastroenterology 65, 427437.CrossRefGoogle ScholarPubMed
Peterson, D. R., Oparil, S., Flourel, S. & Carone, F. A. (1977). Handling of angiotensin II and oxytocin by renal tubular segments perfused in vitro. American Journal of Physiology 232, F319324.Google ScholarPubMed
Petrilli, P., Pucci, P., Pelissier, J. P. & Addeo, F. (1987). Digestion by pancreatic juice of a beta-casomorphin-containing fragment of buffalo beta-casein. International Journal of Peptide & Protein Research 29, 504508.CrossRefGoogle ScholarPubMed
Prockop, D. J., Keiser, H. R. & Sjoerdsma, A. (1962). Gastrointestinal absorption and renal excretion of hydroxyproline peptides. Lancet ii, 527528.CrossRefGoogle Scholar
Puigserver, A., Chapus, C. & Kerfelec, B. (1986). Pancreatic exopeptidases. In Molecular and Cellular Basis of Digestion, pp. 235247 [Desnuelle, P., Sjöström, H. and Norén, O., editors]. Amsterdam: Elsevier.Google Scholar
Rabkin, R. & Kitaji, J. (1983). Renal metabolism of peptide hormones. Mineral & Electrolyte Metabolism 9, 212226.Google ScholarPubMed
Rajendran, V. M., Ansari, S. A., Harig, J. M., Adams, A. H. & Ramaswamy, K. (1985). Transport of glycyl-L-proline by human intestinal brush border membrane vesicles. Gastroenterology 89, 12981304.CrossRefGoogle ScholarPubMed
Rees, R. G., Grimble, G. K., Halliday, D., Ford, C. & Silk, D. B. A. (1988 a). Influence of orally administered amino acids and peptides on protein turnover kinetics in the short bowel syndrome. Gut 29, A1397.Google Scholar
Rees, R. G., Payne-James, J. J., Grimble, G. K. & Silk, D. B. A. (1988 b). Requirement of peptides versus whole protein in patients with impaired gastrointestinal function: a double-blind controlled trial. Journal of Parenteral & Enteral Nutrition 12, 12S.Google Scholar
Rees, R. G., Raimundo, A. H., Grimble, G. K., Hunjan, M. K. & Silk, D. B. A. (1988 c). Peptide based nitrogen source of enteral diets: studies with casein hydrolysates in man. Journal of Parenteral & Enteral Nutrition 12, 21S.Google Scholar
Rennie, M. J. (1985). Muscle protein turnover and the wasting due to injury and disease. British Medical Bulletin 41, 257264.CrossRefGoogle ScholarPubMed
Rennie, M. J., Hundal, H. S., Babji, P., MacLennan, P., Taylor, P. M., Watt, P. W., Jepson, M. M. & Millward, D. J. (1986). Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection and chronic disease. Lancet ii, 10081012.CrossRefGoogle Scholar
Rerat, A., Nunes, Simoes C., Mendy, F. & Roger, L. (1988). Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of a milk enzymic hydrolysate or of free amino acids. British Journal of Nutrition 60, 121136.CrossRefGoogle ScholarPubMed
Robinson, A. B. & Rudd, C. J. (1974). Deamidation of glutaminyl and asparaginyl residues in peptides and proteins. Current Topics in Cellular Regulation 8, 247295.CrossRefGoogle ScholarPubMed
Rolandelli, R. H., Koruda, M. J., Settle, R. G. & Rombeau, J. L. (1986). The effect of enteral feedings supplemented with pectin in the healing of colonic anastomoses in the rat. Surgery 99, 703707.Google ScholarPubMed
Roth, E., Karner, J., Ollenschlager, G., Karner, J., Simmel, A., Fürst, P. & Funovics, J. (1988). Alanylglutamine reduces muscle loss of alanine and glutamine in post-operative anaesthetized dogs. Clinical Science 75, 641648.CrossRefGoogle ScholarPubMed
Rothenbühler, E., Waibel, R. & Solms, J. (1979). An improved method for the separation of peptides and α-amino acids on copper Sephadex. Analytical Biochemistry 97, 367375.CrossRefGoogle ScholarPubMed
Rubino, A., Field, M. & Schwachman, H. (1971). Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border. Journal of Biological Chemistry 246, 35423548.CrossRefGoogle ScholarPubMed
Schlimme, E., Meisel, H. & Frister, H. (1989). Bioactive sequences in milk proteins. In Milk Proteins: Nutritional, Clinical, Functional and Technological Aspects, pp. 143149 [Barth, C. A. and Schlimme, E., editors]. Darmstadt: Steinkopff.CrossRefGoogle Scholar
Semenza, G. & Corcelli, A. (1986). The absorption of sugars and amino acids across the small intestine. In Molecular and Cellular Basis of Digestion, pp. 381412 [Desnuelle, P., Sjöström, H. and Norén, O., editors]. Amsterdam: Elsevier.Google Scholar
Silber, R. H. & Porter, C. C. (1949). Urinary excretion of amino acids and peptides by dogs fed protein hydrolysates or amino acids. Journal of Nutrition 38, 155164.CrossRefGoogle ScholarPubMed
Silbernagl, S. (1977). Intratubular splitting of peptides and their reabsorption as single amino acids from the proximal convolution of rat kidney: a microperfusion study. Kidney International 11, 219.Google Scholar
Silbernagl, S. & Volkl, H. (1977). The role of brush border enzymes in renal tubular transport of peptides, disaccharides and amino acids. Current Problems in Clinical Biochemistry 8, 5965.Google ScholarPubMed
Silk, D. B. A. (1981). Peptide Transport. Clinical Science 60, 607615.CrossRefGoogle ScholarPubMed
Silk, D. B. A. (1989). Fibre and enteral nutrition. Gut 30, 246264.CrossRefGoogle ScholarPubMed
Silk, D. B. A., Chung, Y. C., Berger, K. L., Conley, K., Sleisinger, M. H., Spiller, G. A. & Kim, Y. S. (1979). Comparison of oral feeding of peptide and amino acid meals to normal human subjects. Gut 20, 291299.CrossRefGoogle ScholarPubMed
Silk, D. B. A., Fairclough, P. D., Clark, M. L., Hegarty, J. E., Marrs, T. C., Addison, J. M., Burston, D., Clegg, K. M. & Matthews, D. M. (1980). Uses of a peptide rather than a free amino acid nitrogen source in chemically defined elemental diets. Journal of Parenteral & Enteral Nutrition 4, 548553.CrossRefGoogle Scholar
Silk, D. B. A., Nicholson, J. A. & Kim, Y. S. (1976). Relationships between mucosal hydrolysis and transport of two phenylalanine dipeptides. Gut 17, 870876.CrossRefGoogle ScholarPubMed
Smithson, K. W. & Gray, G. M. (1977). Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush-border membrane aminopeptidases. Journal of Clinical Investigation 60, 665674.CrossRefGoogle Scholar
Song, I.-S., Yoshioko, M., Erickson, R. H., Miura, S., Guan, D. & Kim, Y. S. (1986). Identification and characterisation of brush-order membrane-bound neutral metalloendopeptidases from rat small intestine. Gastroenterology 91, 12341242.CrossRefGoogle Scholar
Souba, W. W., Scott, T. E. & Wilmore, D. W. (1985). Intestinal consumption of intravenously administered fuels. Journal of Parenteral & Enteral Nutrition 9, 1822.CrossRefGoogle ScholarPubMed
Stegink, L. D. & Baker, G. L. (1971). Infusion of protein hydrolysates in the newborn infant: plasma amino acid concentrations. Journal of Pediatrics 78, 595602.CrossRefGoogle ScholarPubMed
Stehle, P. (1988). Bedarfsgerechte Bereitstellung von kurzkettigen Peptiden – Eine Voraussetzung für deren Einsatz in der kunstlichen Ernährung (Adequate provision of short chain peptides – A prerequisite for their use in clinical nutrition). Infusionstherapie 15, 2732.Google Scholar
Stehle, P., Kuhne, B., Kubin, W., Fürst, P. & Pfaender, P. (1982). Synthesis and characterisation of tyrosine- and glutamine-containing peptides. Journal of Applied Biochemistry 4, 280286.Google Scholar
Stehle, P., Pfaender, P. & Fürst, P. (1984). Isotachophoretic analysis of a synthetic dipeptide L-alanyl-L-glutamine: evidence for stability during heat sterilisation. Journal of Chromatography 294, 507512.CrossRefGoogle Scholar
Stehle, P., Zander, J., Mertes, N., Albers, S., Puchstein, Ch., Lawin, P. & Fürst, P. (1989). Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet i, 231233.CrossRefGoogle Scholar
Steinhardt, H. J., Paleos, G. A., Brandl, M., Fekl, W. E. & Adibi, S. A. (1984). Efficacy of a synthetic dipeptide mixture as the source of amino acids for total parenteral nutrition in a subhuman primate (baboon). Gastroenterology 86, 15621569.CrossRefGoogle Scholar
Steinhardt, H. J., Wolf, A., Jakober, B., Schmuelling, R. M., Langer, K., Brandl, M., Fekl, W. E. & Adibi, S. A. (1989). Nitrogen absorption in pancreatectomised patients: protein versus protein hydrolysate as substrate. Journal of Laboratory and Clinical Medicine 113, 162167.Google Scholar
Sterchi, E. E. & Woodley, J. F. (1980). Peptide hydrolases of the human small intestinal mucosa: identification of six distinct enzymes in the brush-border membrane. Clinica Chimica Acta 102, 5765.CrossRefGoogle ScholarPubMed
Stetler-Stevenson, M. A., Flouret, G. & Peterson, D. R. (1981). Handling of luteinising hormone-releasing hormone by renal proximal tubular segments in vitro. American Journal of Physiology 241, F117F122.Google ScholarPubMed
Tobey, N., Heizer, W., Yeh, R., Huang, T. -I. & Hoffner, C. (1985). Human intestinal brush-border peptidases. Gastroenterology 88, 913926.CrossRefGoogle ScholarPubMed
Trocki, O., Mochizuki, H., Dominioni, L. & Alexander, J. W. (1986). Intact protein versus free amino acids in the nutritional support of thermally injured animals. Journal of Parenteral & Enteral Nutrition 10, 139145.CrossRefGoogle ScholarPubMed
Tweedle, D. (1975). Intravenous amino acid solutions. British Journal of Hospital Medicine 13, 8192.Google Scholar
Tweedle, D. E. F., Spivey, J. & Johnston, I. D. A. (1973). Choice of intravenous amino acid solutions for use after surgical operation. Metabolism 22, 173178.CrossRefGoogle ScholarPubMed
Umetsu, H., Matsuoka, H. & Ichishima, E. (1983). Debittering mechanism of bitter peptides from milk casein by wheat carboxypeptidase. Journal of Agricultural and Food Chemistry 31, 5053.CrossRefGoogle Scholar
US Pharmacopeia (1980). Protein hydrolysate injection. pp. 911–912.Google Scholar
Vasquez, J. A., Morse, E. L. & Adibi, S. A. (1985). Effect of starvation on amino acid and peptide transport and peptide hydrolysis in humans. American Journal of Physiology 249, G563G566.Google Scholar
Vinnars, E., Bergström, J. & Fürst, P. (1974). Comparative nitrogen balance studies with an amino-acid solution based on nutritional studies against two protein-based solutions. Acta Anaesthesiologica Scandinavica 18, Suppl. no. 53, 7680.CrossRefGoogle Scholar
Vinnars, E., Fürst, P., Hallgren, B., Lill, I., Hermansson, J. L. & Josephson, B. (1970). The nutritive effect in man of non-essential amino acids infused intravenously (together with the essential ones). I. Individual non-essential amino acids. Acta Anaesthesiologica Scandinavica 14, 147172.CrossRefGoogle ScholarPubMed
Vinnars, E., Fürst, P., Hermansson, J. L., Josephson, B. & Lindholmer, B. (1969). Protein catabolism in the post-operative state and its treatment with amino acid solution. Acta Chirurgica Scandinavica 136, 95109.Google Scholar
Walter, R., Simmons, W. H. & Yoshimoto, T. (1980). Proline specific endo- and exopeptidases. Molecular & Cellular Biochemistry 30, 111127.CrossRefGoogle ScholarPubMed
Wellner, D. & Meister, A. (1981). A survey of inborn errors of amino acid metabolism and transport in man. Annual Review of Biochemistry 50, 911968.CrossRefGoogle ScholarPubMed
Wernerman, J., Hammarkvist, F., von der Decken, A. & Vinnars, E. (1987). Ornithine-alpha-ketoglutarate improves skeletal muscle protein synthesis as assessed by ribosome analysis and nitrogen use after surgery. Annals of Surgery 206, 674678.CrossRefGoogle ScholarPubMed
Wilmore, D. W., Smith, R. J., O'Dwyer, S. T., Jacobs, D. O., Ziegler, T. R. & Wang, X.-D. (1988). The gut: a central organ after surgical stress. Surgery 104, 917923.Google Scholar
Windemueller, H. G. (1982). Glutamine utilisation by the small intestine. Advances in Enzymology 53, 201238.Google Scholar
Winters, R. W., Heird, W. C. & Dell, R. B. (1984). History of parenteral nutrition in pediatrics with emphasis on amino acids. Federation Proceedings 43, 14071411.Google Scholar
Wood, S., Leenen, R., Pullicino, E. & Elia, M. (1988). Effect of short-term starvation on the release of glutamine by human muscle. Proceedings of the Nutrition Society 47, 179A.Google Scholar