Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T13:28:18.423Z Has data issue: false hasContentIssue false

Microbiota in anorexia nervosa: potential for treatment

Published online by Cambridge University Press:  25 July 2022

Linda Landini*
Affiliation:
S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
Prince Dadson
Affiliation:
Turku PET Centre, University of Turku, Turku, Finland
Fabrizio Gallo
Affiliation:
S.S.D. Dietetics and Clinical Nutrition ASL 4 Chiavarese Liguria-Sestri Levante Hospital, Sestri Levante, Italy
Miikka-Juhani Honka
Affiliation:
Turku PET Centre, University of Turku, Turku, Finland
Hellas Cena
Affiliation:
Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
*
*Corresponding author: Linda Landini, email: [email protected]

Abstract

Anorexia nervosa (AN) is characterised by the restriction of energy intake in relation to energy needs and a significantly lowered body weight than normally expected, coupled with an intense fear of gaining weight. Treatment of AN is currently based on psychological and refeeding approaches, but their efficacy remains limited since 40% of patients after 10 years of medical care still present symptoms of AN. The intestine hosts a large community of microorganisms, called the “microbiota”, which live in symbiosis with the human host. The gut microbiota of a healthy human is dominated by bacteria from two phyla: Firmicutes and, majorly, Bacteroidetes. However, the proportion in their representation differs on an individual basis and depends on many external factors including medical treatment, geographical location and hereditary, immunological and lifestyle factors. Drastic changes in dietary intake may profoundly impact the composition of the gut microbiota, and the resulting dysbiosis may play a part in the onset and/or maintenance of comorbidities associated with AN, such as gastrointestinal disorders, anxiety and depression, as well as appetite dysregulation. Furthermore, studies have reported the presence of atypical intestinal microbial composition in patients with AN compared with healthy normal-weight controls. This review addresses the current knowledge about the role of the gut microbiota in the pathogenesis and treatment of AN. The review also focuses on the bidirectional interaction between the gastrointestinal tract and the central nervous system (microbiota–gut–brain axis), considering the potential use of the gut microbiota manipulation in the prevention and treatment of AN.

Type
Review Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Equal contributions

References

American Psychiatric Association. (2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Arlington, VA: American Psychiatric Association.Google Scholar
Campbell, K & Peebles, R. (2014) Eating disorders in children and adolescents: state of the art review. Pediatrics 134, 582592.CrossRefGoogle ScholarPubMed
Schaumberg, K, Welch, E, Breithaupt, L, et al. (2017) The science behind the academy for eating disorders’ nine truths about eating disorders. Eur Eat Disord Rev 25, 432450.CrossRefGoogle ScholarPubMed
Himmerich, H, Bentley, J, Kan, C, et al. (2019) Genetic risk factors for eating disorders: an update and insights into pathophysiology. Ther Adv Psychopharmacol 9, 2045125318814734.CrossRefGoogle ScholarPubMed
Armougom, F, Henry, M, Vialettes, B, et al. (2009) Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One 4, e7125.CrossRefGoogle ScholarPubMed
Pfleiderer, A, Lagier, J-C, Armougom, F, et al. (2013) Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol Infect Dis 32, 14711481.CrossRefGoogle ScholarPubMed
Kleiman, SC, Watson, HJ, Bulik-Sullivan, EC, et al. (2015) The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom Med 77, 969981.CrossRefGoogle ScholarPubMed
Morita, C, Tsuji, H, Hata, T, et al. (2015) Gut dysbiosis in patients with anorexia nervosa. PloS One 10, e0145274.CrossRefGoogle ScholarPubMed
Mack, I, Cuntz, U, Grämer, C, et al. (2016) Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci Rep 6, 26752.CrossRefGoogle Scholar
Scharner, S & Stengel, A (2019) Alterations of brain structure and functions in anorexia nervosa. Clin Nutr Exp 28, 2232.CrossRefGoogle Scholar
Borgo, F, Riva, A, Benetti, A, et al. (2017) Microbiota in anorexia nervosa: the triangle between bacterial species, metabolites and psychological tests. PLoS ONE 12, e0179739.CrossRefGoogle ScholarPubMed
Schorr, M & Miller, KK (2017) The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocrinol 13, 174186.CrossRefGoogle ScholarPubMed
Call, C, Walsh, BT & Attia, E (2013) From DSM-IV to DSM-5: changes to eating disorder diagnoses. Curr Opin Psychiatry 26, 532536.CrossRefGoogle ScholarPubMed
Galmiche, M, Déchelotte, P, Lambert, G, et al. (2019) Prevalence of eating disorders over the 2000–2018 period: a systematic literature review. Am J Clin Nutr 109, 14021413.CrossRefGoogle ScholarPubMed
Arcelus, J, Mitchell, AJ, Wales, J, et al. (2011) Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry 68, 724731.CrossRefGoogle ScholarPubMed
Kaye, WH, Bulik, CM, Thornton, L, et al. (2004) Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry 161, 22152221.CrossRefGoogle ScholarPubMed
Manuelli, M, Blundell, JE, Biino, G, et al. (2019) Body composition and resting energy expenditure in women with anorexia nervosa: is hyperactivity a protecting factor? Clin Nutr ESPEN 29, 160164.CrossRefGoogle ScholarPubMed
Gorwood, P, Blanchet-Collet, C, Chartrel, N, et al. (2016) New insights in anorexia nervosa. Front Neurosci 10, 256.CrossRefGoogle ScholarPubMed
Torres-Fuentes, C, Schellekens, H, Dinan, TG, et al. (2017) The microbiota–gut–brain axis in obesity. Lancet Gastroenterol Hepatol 2, 747756.CrossRefGoogle ScholarPubMed
Rosenbaum, M, Knight, R, Leibel, RL. (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab 26, 493501.CrossRefGoogle ScholarPubMed
Foster, JA, McVey Neufeld, K-A. (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36, 305312.CrossRefGoogle ScholarPubMed
Fetissov, SO. (2017) Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 13, 1125.CrossRefGoogle ScholarPubMed
Thursby, E & Juge, N (2017) Introduction to the human gut microbiota. Biochem J 474, 18231836.CrossRefGoogle Scholar
Gill, SR, Pop, M, DeBoy, RT, et al. (2006) Metagenomic analysis of the human distal gut microbiome. Science 312, 13551359.CrossRefGoogle ScholarPubMed
Bäckhed, F, Ley, RE, Sonnenburg, JL, et al. (2005) Host-bacterial mutualism in the human intestine. Science 307, 19151920.CrossRefGoogle ScholarPubMed
Shortt, C, Hasselwander, O, Meynier, A, et al. (2018) Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr 57, 2549.CrossRefGoogle ScholarPubMed
Morrison, DJ & Preston, T. (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189200.CrossRefGoogle ScholarPubMed
Topping, DL & Clifton, PM. (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81, 10311064.CrossRefGoogle ScholarPubMed
Singh, RK, Chang, H-W, Yan, D, et al. (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15, 73.CrossRefGoogle ScholarPubMed
Goodrich, JK, Waters, JL, Poole, AC, et al. (2014) Human genetics shape the gut microbiome. Cell 159, 789799.CrossRefGoogle ScholarPubMed
Doré, J & Blottière, H. (2015) The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol 32, 195199.CrossRefGoogle ScholarPubMed
Graf, D, Di Cagno, R, Fåk, F, et al. (2015) Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis 26, 26164.Google Scholar
Zmora, N, Suez, J & Elinav, E. (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16, 3556.CrossRefGoogle ScholarPubMed
Slyepchenko, A, Maes, M, Jacka, FN, et al. (2017) Gut microbiota, bacterial translocation, and interactions with diet: Pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom 86, 3146.CrossRefGoogle ScholarPubMed
Dinan, TG & Cryan, JF. (2015) The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr Opin Clin Nutr Metab Care 18, 552558.CrossRefGoogle ScholarPubMed
van de Wouw, M, Schellekens, H, Dinan, TG, et al. (2017) Microbiota–gut–brain axis: modulator of host metabolism and appetite. J Nutr 147, 727745.CrossRefGoogle ScholarPubMed
Guinane, CM & Cotter, PD. (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap Adv Gastroenterol 6, 295308.CrossRefGoogle ScholarPubMed
Mithieux, G. (2018) Gut microbiota and host metabolism: what relationship. Neuroendocrinology 106, 352356.CrossRefGoogle ScholarPubMed
Cryan, JF & O’Mahony, SM. (2011) The microbiome–gut–brain axis: from bowel to behavior. Neurogastroenterol Motil 23, 187192.CrossRefGoogle ScholarPubMed
Rhee, SH, Pothoulakis, C & Mayer, EA. (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6, 306314.CrossRefGoogle ScholarPubMed
Al Omran, Y & Aziz, Q. (2014) The Brain–Gut Axis in Health and Disease. In: Lyte, M, Cryan, JF, editors. Microbial Endocrinology: The Microbiota–Gut–Brain Axis in Health and Disease [Internet]. New York, NY: Springer; [cited 2021 Mar 1]. P. 135153. Available from: https://doi.org/10.1007/978-1-4939-0897-4_6 CrossRefGoogle Scholar
Sampson, TR & Mazmanian, SK. (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17, 565576.CrossRefGoogle ScholarPubMed
Ma, Q, Xing, C, Long, W, et al. (2019) Impact of microbiota on central nervous system and neurological diseases: the gut–brain axis. J Neuroinflammation 16, 53.CrossRefGoogle ScholarPubMed
Bonaz, B, Bazin, T & Pellissier, S. (2018) The vagus nerve at the interface of the microbiota–gut–brain axis. Front Neurosci [Internet]. [cited 2022 Mar 30];12. Available from: https://www.frontiersin.org/article/10.3389/fnins.2018.00049 CrossRefGoogle ScholarPubMed
Roubalová, R, Procházková, P, Papežová, H, et al. (2020) Anorexia nervosa: gut microbiota–immune–brain interactions. Clin Nutr 39, 676684.CrossRefGoogle ScholarPubMed
Lyte, M. (2013) Microbial endocrinology in the microbiome–gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog [Internet] 9. Nov 14 [cited 2021 Mar 1]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828163/ CrossRefGoogle ScholarPubMed
Dehhaghi, M, Kazemi Shariat Panahi, H & Guillemin, GJ. (2018) Microorganisms’ footprint in neurodegenerative diseases. Front Cell Neurosci 12, 466.CrossRefGoogle ScholarPubMed
Strandwitz, P, Kim, KH, Terekhova, D, et al. (2019) GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. Nature Publishing Group; 4, 396403.CrossRefGoogle ScholarPubMed
Strandwitz, P. (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B), 128133.CrossRefGoogle ScholarPubMed
Kootte, RS, Levin, E, Salojärvi, J, et al. (2017) Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 26, 611619.e6.CrossRefGoogle ScholarPubMed
Dahlin, M, Elfving, A, Ungerstedt, U, et al. (2005) The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 64, 115125.CrossRefGoogle ScholarPubMed
Bloss, CS, Berrettini, W, Bergen, AW, et al. (2011) Genetic association of recovery from eating disorders: the role of GABA receptor SNPs. Neuropsychopharmacology 36, 22222232.CrossRefGoogle ScholarPubMed
Cani, PD & Knauf, C. (2016) How gut microbes talk to organs: the role of endocrine and nervous routes. Mol Metab 5, 743752.CrossRefGoogle ScholarPubMed
Evrensel, A & Ceylan, ME. (2015) The gut–brain axis: the missing link in depression. Clin Psychopharmacol Neurosci 13, 239244.CrossRefGoogle ScholarPubMed
Yano, JM, Yu, K, Donaldson, GP, et al. (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell Elsevier; 161, 264276.CrossRefGoogle ScholarPubMed
Bailer, UF & Kaye, WH. (2011) Serotonin: imaging findings in eating disorders. Curr Top Behav Neurosci 6, 5979.CrossRefGoogle ScholarPubMed
Tsigos, C & Chrousos, GP. (2002) Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53, 865871.CrossRefGoogle ScholarPubMed
Sudo, N. (2014) Microbiome, HPA axis and production of endocrine hormones in the gut. Adv Exp Med Biol 817, 177194.CrossRefGoogle ScholarPubMed
Carabotti, M, Scirocco, A, Maselli, MA, et al. (2015) The gut–brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28, 203209.Google ScholarPubMed
Sudo, N, Chida, Y, Aiba, Y, et al. (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1), 263275.CrossRefGoogle ScholarPubMed
Bercik, P, Denou, E, Collins, J, et al. (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599609, 609.e1-3.CrossRefGoogle ScholarPubMed
Braniste, V, Al-Asmakh, M, Kowal, C, et al. (2014) The gut microbiota influences blood–brain barrier permeability in mice. Sci Transl Med. American Association for the Advancement of Science; 6, 263ra158263ra158.CrossRefGoogle ScholarPubMed
Diaz Heijtz, R, Wang, S, Anuar, F, et al. (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 108, 30473052.CrossRefGoogle ScholarPubMed
Neufeld, KM, Kang, N, Bienenstock, J, et al. (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23, 255–64, e119.CrossRefGoogle ScholarPubMed
Umesaki, Y, Setoyama, H, Matsumoto, S, et al. (1993) Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 3237.Google ScholarPubMed
Clarke, G, Grenham, S, Scully, P, et al. (2013) The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. Nature Publishing Group; 18, 666673.CrossRefGoogle Scholar
Neuman, H, Debelius, JW, Knight, R, et al. (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 39, 509521.CrossRefGoogle ScholarPubMed
Roshchina, VV. (2010) Evolutionary Considerations of Neurotransmitters in Microbial, Plant, and Animal Cells. In: Lyte, M, Freestone, PPE, editors. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health [Internet]. New York, NY: Springer; [cited 2021 Mar 1]. P. 1752. Available from: https://doi.org/10.1007/978-1-4419-5576-0_2 CrossRefGoogle Scholar
Alcock, J, Maley, CC, Aktipis, CA. (2014) Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. Bioessays 36, 940949.CrossRefGoogle ScholarPubMed
Saito, T & Bunnett, NW. (2005) Protease-activated receptors. Neuromol Med 7, 7999.CrossRefGoogle ScholarPubMed
Gecse, K, Róka, R, Ferrier, L, et al. (2008) Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic luminal factor impairing colonic permeability and sensitivity. Gut 57, 591599.CrossRefGoogle Scholar
Raevuori, A, Haukka, J, Vaarala, O, et al. (2014) The increased risk for autoimmune diseases in patients with eating disorders. PLoS ONE. Public Library of Science; 9, e104845.CrossRefGoogle ScholarPubMed
Wotton, CJ, James, A & Goldacre, MJ. (2016) Coexistence of eating disorders and autoimmune diseases: record linkage cohort study, UK. Int J Eat Disord 49, 663672.CrossRefGoogle ScholarPubMed
Dalton, B, Bartholdy, S, Robinson, L, et al. (2018) A meta-analysis of cytokine concentrations in eating disorders. J Psychiatr Res 103, 252264.CrossRefGoogle ScholarPubMed
Solmi, M, Veronese, N, Favaro, A, et al. (2015) Inflammatory cytokines and anorexia nervosa: a meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 51, 237252.CrossRefGoogle ScholarPubMed
Gibson, D & Mehler, PS. (2019) Anorexia nervosa and the immune system – a narrative review. J Clin Med 8, E1915.CrossRefGoogle ScholarPubMed
Fetissov, SO, Harro, J, Jaanisk, M, et al. (2005) Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc Natl Acad Sci USA. 102, 1486514870.CrossRefGoogle ScholarPubMed
Fetissov, SO, Hallman, J, Oreland, L, et al. (2002) Autoantibodies against α-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci USA. 99, 1715517160.CrossRefGoogle ScholarPubMed
Lucas, N, Legrand, R, Bôle-Feysot, C, et al. (2019) Immunoglobulin G modulation of the melanocortin 4 receptor signaling in obesity and eating disorders. Transl Psychiatry. Nature Publishing Group; 9, 113.CrossRefGoogle ScholarPubMed
Tennoune, N, Chan, P, Breton, J, et al. (2014) Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl Psychiatry. Nature Publishing Group; 4, e458e458.CrossRefGoogle ScholarPubMed
Breton, J, Jacquemot, J, Yaker, L, et al. (2020) Host starvation and female sex influence enterobacterial ClpB production: a possible link to the etiology of eating disorders. Microorganisms. Multidisciplinary Digital Publishing Institute; 8, 530.CrossRefGoogle Scholar
Ericson, MD, Schnell, SM, Freeman, KT, et al. (2015) A fragment of the Escherichia coli ClpB heat-shock protein is a micromolar melanocortin 1 receptor agonist. Bioorg Med Chem Lett 25, 53065308.CrossRefGoogle ScholarPubMed
Takagi, K, Legrand, R, Asakawa, A, et al. (2013) Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans. Nat Commun. Nature Publishing Group; 4, 2685.CrossRefGoogle ScholarPubMed
Otto, B, Cuntz, U, Fruehauf, E, et al. (2001) Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur J Endocrinol 145, 669673.CrossRefGoogle ScholarPubMed
Germain, N, Galusca, B, Grouselle, D, et al. (2009) Ghrelin/obestatin ratio in two populations with low bodyweight: constitutional thinness and anorexia nervosa. Psychoneuroendocrinology 34, 413419.CrossRefGoogle ScholarPubMed
Tanaka, M, Naruo, T, Yasuhara, D, et al. (2003) Fasting plasma ghrelin levels in subtypes of anorexia nervosa. Psychoneuroendocrinology 28, 829835.CrossRefGoogle ScholarPubMed
Tanaka, M, Naruo, T, Nagai, N, et al. (2003) Habitual binge/purge behavior influences circulating ghrelin levels in eating disorders. J Psychiatr Res 37, 1722.10.1016/S0022-3956(02)00067-5CrossRefGoogle ScholarPubMed
Troisi, A, Di Lorenzo, G, Lega, I, et al. (2005) Plasma ghrelin in anorexia, bulimia, and binge-eating disorder: relations with eating patterns and circulating concentrations of cortisol and thyroid hormones. Neuroendocrinology 81, 259266.CrossRefGoogle ScholarPubMed
Asakawa, A, Inui, A, Fujimiya, M, et al. (2005) Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut 54, 1824.CrossRefGoogle ScholarPubMed
Inhoff, T, Mönnikes, H, Noetzel, S, et al. (2008) Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides 29, 21592168.CrossRefGoogle ScholarPubMed
Fernandez, G, Cabral, A, Cornejo, MP, et al. (2016) Des-acyl ghrelin directly targets the arcuate nucleus in a ghrelin-receptor independent manner and impairs the orexigenic effect of ghrelin. J Neuroendocrinol 28, 12349.CrossRefGoogle Scholar
Terashi, M, Asakawa, A, Harada, T, et al. (2011) Ghrelin reactive autoantibodies in restrictive anorexia nervosa. Nutrition 27, 407413.CrossRefGoogle ScholarPubMed
Fetissov, SO, Hamze Sinno, M, Coëffier, M, et al. (2008) Autoantibodies against appetite-regulating peptide hormones and neuropeptides: putative modulation by gut microflora. Nutrition 24, 348359.CrossRefGoogle ScholarPubMed
Bervoets, L, Van Hoorenbeeck, K, Kortleven, I, et al. (2013) Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog 5, 10.CrossRefGoogle ScholarPubMed
Turnbaugh, PJ, Hamady, M, Yatsunenko, T, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457, 480484.CrossRefGoogle ScholarPubMed
Flint, HJ. (2011) Obesity and the gut microbiota. J Clin Gastroenterol 45 Suppl, S128132.CrossRefGoogle ScholarPubMed
Cox, LM, Yamanishi, S, Sohn, J, et al. (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705721.CrossRefGoogle ScholarPubMed
Million, M, Angelakis, E, Maraninchi, M, et al. (2013) Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli . Int J Obes (Lond) 37, 14601466.CrossRefGoogle ScholarPubMed
Halverson, T & Alagiakrishnan, K. (2020) Gut microbes in neurocognitive and mental health disorders. Ann Med. Taylor & Francis; 52, 423443.CrossRefGoogle ScholarPubMed
Alsten, SCV & Duncan, AE. (2020) Lifetime patterns of comorbidity in eating disorders: an approach using sequence analysis. Eur Eat Disord Rev 28, 709723.CrossRefGoogle ScholarPubMed
Clarke, SF, Murphy, EF, Nilaweera, K, et al. (2012) The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes 3, 186202.CrossRefGoogle ScholarPubMed
Gómez-Zorita, S, Aguirre, L, Milton-Laskibar, I, et al. (2019) Relationship between changes in microbiota and liver steatosis induced by high-fat feeding – a review of rodent models. Nutrients 11(9), 2156.CrossRefGoogle Scholar
Kleiman, SC, Glenny, EM, Bulik-Sullivan, EC, et al. (2017) Daily changes in composition and diversity of the intestinal microbiota in patients with anorexia nervosa: a series of three cases. Eur Eat Disord Rev 25, 423427.CrossRefGoogle ScholarPubMed
Mörkl, S, Lackner, S, Müller, W, et al. (2017) Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. Int J Eat Disord 50, 14211431.CrossRefGoogle ScholarPubMed
Ruusunen, A, Rocks, T, Jacka, F, et al. (2019) The gut microbiome in anorexia nervosa: relevance for nutritional rehabilitation. Psychopharmacology (Berl) 236, 15451558.CrossRefGoogle ScholarPubMed
Monteleone, AM, Troisi, J, Serena, G, et al. (2021) The gut microbiome and metabolomics profiles of restricting and binge-purging type anorexia nervosa. Nutrients 13, 507.CrossRefGoogle ScholarPubMed
Breton, J, Tirelle, P, Hasanat, S, et al. (2021) Gut microbiota alteration in a mouse model of anorexia nervosa. Clin Nutr 40, 181189.CrossRefGoogle Scholar
Schwensen, HF, Kan, C, Treasure, J, et al. (2018) A systematic review of studies on the faecal microbiota in anorexia nervosa: future research may need to include microbiota from the small intestine. Eat Weight Disord 23, 399418.CrossRefGoogle ScholarPubMed
Zoetendal, EG, Raes, J, van den Bogert, B, et al. (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6, 14151426.CrossRefGoogle ScholarPubMed
Macfarlane, GT & Macfarlane, S. (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95, 5060.CrossRefGoogle ScholarPubMed
Mortensen, PB & Clausen, MR. (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol. Taylor & Francis; 31(sup216), 132148.CrossRefGoogle Scholar
Macfarlane, GT, Gibson, GR & Cummings, JH. (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72, 5764.Google ScholarPubMed
Holman, RT, Adams, CE, Nelson, RA, et al. (1995) Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J Nutr 125, 901907.Google ScholarPubMed
Gérard, C & Vidal, H. (2019) Impact of gut microbiota on host glycemic control. Front Endocrinol [Internet] 10. Frontiers; [cited 2021 Mar 2]. Available from: https://www.frontiersin.org/articles/10.3389/fendo.2019.00029/full Google ScholarPubMed
Farup, PG & Valeur, J. (2020) Changes in Faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity. Nutrients [Internet] 12. Mar 18 [cited 2021 Mar 2]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146446/ Google ScholarPubMed
Broadley, KJ, Akhtar Anwar, M, Herbert, AA, et al. (2008) Effects of dietary amines on the gut and its vasculature. Br J Nutr 101, 16451652.CrossRefGoogle ScholarPubMed
Bugda Gwilt, K, González, DP, Olliffe, N, et al. (2020) Actions of trace amines in the brain-gut-microbiome axis via trace amine-associated receptor-1 (TAAR1). Cell Mol Neurobiol 40, 191201.CrossRefGoogle ScholarPubMed
Ferragud, A, Howell, AD, Moore, CF, et al. (2017) The trace amine-associated receptor 1 agonist RO5256390 blocks compulsive, binge-like eating in rats. Neuropsychopharmacology. Nature Publishing Group; 42, 14581470.CrossRefGoogle ScholarPubMed
Hetterich, L, Mack, I, Giel, KE, et al. (2019) An update on gastrointestinal disturbances in eating disorders. Mol Cell Endocrinol 497, 110318.CrossRefGoogle ScholarPubMed
Sato, Y & Fukudo, S. (2015) Gastrointestinal symptoms and disorders in patients with eating disorders. Clin J Gastroenterol 8, 255263.CrossRefGoogle ScholarPubMed
Cao, H, Liu, X, An, Y, et al. (2017) Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 7, 10322.CrossRefGoogle ScholarPubMed
Tap, J, Derrien, M, Törnblom, H, et al. (2017) Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology 152, 111123.e8.CrossRefGoogle ScholarPubMed
Wang, X, Luscombe, GM, Boyd, C, et al. (2014) Functional gastrointestinal disorders in eating disorder patients: altered distribution and predictors using ROME III compared to ROME II criteria. World J Gastroenterol 20, 1629316299.CrossRefGoogle ScholarPubMed
Stacher, G, Kiss, A, Wiesnagrotzki, S, et al. (1986) Oesophageal and gastric motility disorders in patients categorised as having primary anorexia nervosa. Gut 27, 11201126.CrossRefGoogle ScholarPubMed
Benini, L, Todesco, T, Frulloni, L, et al. (2010) Esophageal motility and symptoms in restricting and binge-eating/purging anorexia. Dig Liver Dis 42, 767772.CrossRefGoogle ScholarPubMed
Bluemel, S, Menne, D, Milos, G, et al. (2017) Relationship of body weight with gastrointestinal motor and sensory function: studies in anorexia nervosa and obesity. BMC Gastroenterol 17, 4.CrossRefGoogle ScholarPubMed
Santonicola, A, Siniscalchi, M, Capone, P, et al. (2012) Prevalence of functional dyspepsia and its subgroups in patients with eating disorders. World J Gastroenterol 18, 43794385.CrossRefGoogle ScholarPubMed
Lee, S, Lee, AM, Ngai, E, et al. (2001) Rationales for food refusal in Chinese patients with anorexia nervosa. Int J Eat Disord 29, 224229.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Boyd, C, Abraham, S & Kellow, J. (2005) Psychological features are important predictors of functional gastrointestinal disorders in patients with eating disorders. Scand J Gastroenterol 40, 929935.CrossRefGoogle ScholarPubMed
Sileri, P, Franceschilli, L, De Lorenzo, A, et al. (2014) Defecatory disorders in anorexia nervosa: a clinical study. Tech Coloproctol 18, 439444.Google ScholarPubMed
Waldholtz, BD & Andersen, AE. (1990) Gastrointestinal symptoms in anorexia nervosa. A prospective study. Gastroenterology 98, 14151419.CrossRefGoogle ScholarPubMed
Chiarioni, G, Bassotti, G, Monsignori, A, et al. (2000) Anorectal dysfunction in constipated women with anorexia nervosa. Mayo Clin Proc 75, 10151019.CrossRefGoogle ScholarPubMed
Zipfel, S, Sammet, I, Rapps, N, et al. (2006) Gastrointestinal disturbances in eating disorders: clinical and neurobiological aspects. Auton Neurosci 129, 99106.CrossRefGoogle ScholarPubMed
Szmukler, GI, Young, GP, Lichtenstein, M, et al. (1990) A serial study of gastric emptying in anorexia nervosa and bulimia. Aust NZ J Med 20, 220225.CrossRefGoogle ScholarPubMed
The National Institute for Health and Care Excellence. (2017) Eating disorders: recognition and treatment [Internet]. London, UK; p. 42. Available from: www.nice.org.uk/guidance/ng69 Google Scholar
Bulik, CM, Berkman, ND, Brownley, KA, et al. (2007) Anorexia nervosa treatment: a systematic review of randomized controlled trials. Int J Eat Disord 40, 310320.CrossRefGoogle ScholarPubMed
Lock, J & Litt, I. (2003) What predicts maintenance of weight for adolescents medically hospitalized for anorexia nervosa? Eat Disord 11, 17.CrossRefGoogle ScholarPubMed
Lund, BC, Hernandez, ER, Yates, WR, et al. (2009) Rate of inpatient weight restoration predicts outcome in anorexia nervosa. Int J Eat Disord 42, 301305.CrossRefGoogle ScholarPubMed
Baran, SA, Weltzin, TE & Kaye, WH. (1995) Low discharge weight and outcome in anorexia nervosa. Am J Psychiatry 152, 10701072.Google ScholarPubMed
Fisher, M, Simpser, E & Schneider, M. (2000) Hypophosphatemia secondary to oral refeeding in anorexia nervosa. Int J Eat Disord 28, 181187.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Kohn, MR, Golden, NH & Shenker, IR. (1998) Cardiac arrest and delirium: presentations of the refeeding syndrome in severely malnourished adolescents with anorexia nervosa. J Adolesc Health 22, 239243.CrossRefGoogle ScholarPubMed
Beumont, PJ & Large, M. (1991) Hypophosphataemia, delirium and cardiac arrhythmia in anorexia nervosa. Med J Aust 155, 519522.CrossRefGoogle ScholarPubMed
Rigaud, D, Pennacchio, H, Bizeul, C, et al. (2011) Outcome in AN adult patients: a 13-year follow-up in 484 patients. Diabetes Metab 37, 305311.CrossRefGoogle Scholar
Treasure, J, Zipfel, S, Micali, N, et al. (2015) Anorexia nervosa. Nature Reviews Disease Primers. Nature Publishing Group; 1, 1–21.Google Scholar
Garber, AK, Sawyer, SM, Golden, NH, et al. (2016) A systematic review of approaches to refeeding in patients with anorexia nervosa. Int J Eat Disord 49, 293310.CrossRefGoogle ScholarPubMed
Kerruish, KP, O’Connor, J, Humphries, IRJ, et al. (2002) Body composition in adolescents with anorexia nervosa. Am J Clin Nutr 75, 3137.CrossRefGoogle ScholarPubMed
Krahn, DD, Rock, C, Dechert, RE, et al. (1993) Changes in resting energy expenditure and body composition in anorexia nervosa patients during refeeding. J Am Diet Assoc 93, 434438.CrossRefGoogle ScholarPubMed
Probst, M, Goris, M, Vandereycken, W, et al. (1996) Body composition in female anorexia nervosa patients. Br J Nutr 76, 639–47.CrossRefGoogle ScholarPubMed
El Ghoch, M, Calugi, S, Lamburghini, S, et al. (2014) Anorexia nervosa and body fat distribution: a systematic review. Nutrients. Multidisciplinary Digital Publishing Institute; 6, 38953912.CrossRefGoogle ScholarPubMed
Kaplan, AS, Walsh, BT, Olmsted, M, et al. (2009) The slippery slope: prediction of successful weight maintenance in anorexia nervosa. Psychol Med 39, 10371045.CrossRefGoogle ScholarPubMed
Misra, M, Golden, NH & Katzman, DK. (2016) State of the art systematic review of bone disease in anorexia nervosa. Int J Eat Disord 49, 276292.CrossRefGoogle ScholarPubMed
Meehan, KG, Loeb, KL, Roberto, CA, et al. (2006) Mood change during weight restoration in patients with anorexia nervosa. Int J Eat Disord 39, 587589.CrossRefGoogle ScholarPubMed
Xu, M-Q, Cao, H-L, Wang, W-Q, et al. (2015) Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 21, 102111.CrossRefGoogle ScholarPubMed
Borody, TJ & Khoruts, A. (2011) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9, 8896.CrossRefGoogle ScholarPubMed
Prochazkova, P, Roubalova, R, Dvorak, J, et al. (2019) Microbiota, microbial metabolites, and barrier function in a patient with anorexia nervosa after fecal microbiota transplantation. Microorganisms [Internet] 7 [cited 2021 Mar 2]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780752/ Google Scholar
de Clercq, NC, Frissen, MN, Davids, M, et al. (2019) Weight gain after fecal microbiota transplantation in a patient with recurrent underweight following clinical recovery from anorexia nervosa. PPS. Karger Publishers; 88, 5860.Google Scholar
Pimentel, M, Lembo, A, Chey, WD, et al. (2011) Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. Massachusetts Medical Society; 364, 2232.CrossRefGoogle ScholarPubMed
Stacher, G, Peeters, TL, Bergmann, H, et al. (1993) Erythromycin effects on gastric emptying, antral motility and plasma motilin and pancreatic polypeptide concentrations in anorexia nervosa. Gut 34, 166172.CrossRefGoogle ScholarPubMed
Hiyama, T, Yoshihara, M, Tanaka, S, et al. (2009) Effectiveness of prokinetic agents against diseases external to the gastrointestinal tract. J Gastroenterol Hepatol 24, 537546.CrossRefGoogle ScholarPubMed
Larroya-García, A, Navas-Carrillo, D & Orenes-Piñero, E. (2019) Impact of gut microbiota on neurological diseases: diet composition and novel treatments. Crit Rev Food Sci Nutr 59, 31023116.CrossRefGoogle ScholarPubMed
Wallace, CJK & Milev, R. (2017) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann Gen Psychiatry [Internet] 16. [cited 2021 Mar 2]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319175/ Google ScholarPubMed
Lew, L-C, Hor, Y-Y, Yusoff, NAA, et al. (2019) Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: a randomised, double-blind, placebo-controlled study. Clin Nutr 38, 20532064.CrossRefGoogle ScholarPubMed
Takada, M, Nishida, K, Kataoka-Kato, A, et al. (2016) Probiotic Lactobacillus casei strain Shirota relieves stress-associated symptoms by modulating the gut–brain interaction in human and animal models. Neurogastroenterol Motil 28, 10271036.CrossRefGoogle ScholarPubMed
Gibson, GR, Hutkins, R, Sanders, ME, et al. (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. Nature Publishing Group; 14, 491502.CrossRefGoogle ScholarPubMed
Burokas, A, Arboleya, S, Moloney, RD, et al. (2017) Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 82, 472487.CrossRefGoogle ScholarPubMed
Wouw, M van de, Boehme, M, Lyte, JM, et al. (2018) Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain–gut axis alterations. J Physiol 596, 49234944.CrossRefGoogle ScholarPubMed
Malan-Muller, S, Valles-Colomer, M, Raes, J, et al. (2018) The gut microbiome and mental health: Implications for anxiety- and trauma-related disorders. OMICS 22, 90107.CrossRefGoogle ScholarPubMed
Crumeyrolle-Arias, M, Jaglin, M, Bruneau, A, et al. (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207217.CrossRefGoogle ScholarPubMed
Bravo, JA, Forsythe, P, Chew, MV, et al. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS. National Academy of Sciences; 108, 1605016055.CrossRefGoogle Scholar
Nishino, R, Mikami, K, Takahashi, H, et al. (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25, 521528.CrossRefGoogle Scholar
Kantak, PA, Bobrow, DN & Nyby, JG. (2014) Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav Pharmacol 25, 7179.CrossRefGoogle ScholarPubMed
Sanikhani, NS, Modarressi, MH, Jafari, P, et al. (2020) The effect of Lactobacillus casei consumption in improvement of obsessive–compulsive disorder: an animal study. Probiotics & Antimicro Prot 12, 14091419.CrossRefGoogle ScholarPubMed
Desbonnet, L, Garrett, L, Clarke, G, et al. (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170, 11791188.CrossRefGoogle ScholarPubMed
Liang, S, Wang, T, Hu, X, et al. (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310, 561577.CrossRefGoogle ScholarPubMed
Goh, KK, Liu, Y-W, Kuo, P-H, et al. (2019) Effect of probiotics on depressive symptoms: a meta-analysis of human studies. Psychiatry Research 282, 112568.CrossRefGoogle ScholarPubMed
Golden, NH, Keane-Miller, C, Sainani, KL, et al. (2013) Higher caloric intake in hospitalized adolescents with anorexia nervosa is associated with reduced length of stay and no increased rate of refeeding syndrome. J Adolesc Health 53, 573578.CrossRefGoogle ScholarPubMed
Peebles, R, Lesser, A, Park, CC, et al. (2017) Outcomes of an inpatient medical nutritional rehabilitation protocol in children and adolescents with eating disorders. J Eat Disord 5, 7.CrossRefGoogle ScholarPubMed
Smith, MI, Yatsunenko, T, Manary, MJ, et al. (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548554.CrossRefGoogle ScholarPubMed
Redgrave, GW, Coughlin, JW, Schreyer, CC, et al. (2015) Refeeding and weight restoration outcomes in anorexia nervosa: challenging current guidelines. Int J Eat Disord 48, 866873.CrossRefGoogle ScholarPubMed
Whitelaw, M, Gilbertson, H, Lam, P-Y, et al. (2010) Does aggressive refeeding in hospitalized adolescents with anorexia nervosa result in increased hypophosphatemia? J Adolesc Health 46, 577582.CrossRefGoogle ScholarPubMed
El Ghoch, M, Milanese, C, Calugi, S, et al. (2014) Body composition, eating disorder psychopathology, and psychological distress in anorexia nervosa: a longitudinal study. Am J Clin Nutr 99, 771778.CrossRefGoogle ScholarPubMed
Leclerc, A, Turrini, T, Sherwood, K, et al. (2013) Evaluation of a nutrition rehabilitation protocol in hospitalized adolescents with restrictive eating disorders. J Adolesc Health 53, 585589.CrossRefGoogle ScholarPubMed
Hatch, A, Madden, S, Kohn, MR, et al. (2010) In first presentation adolescent anorexia nervosa, do cognitive markers of underweight status change with weight gain following a refeeding intervention? Int J Eat Disord 43, 295306.Google ScholarPubMed
Scott, KP, Gratz, SW, Sheridan, PO, et al. (2013) The influence of diet on the gut microbiota. Pharmacol Res 69, 5260.CrossRefGoogle ScholarPubMed
Simpson, HL & Campbell, BJ. (2015) Review article: dietary fibre–microbiota interactions. Aliment Pharmacol Ther 42, 158179.CrossRefGoogle ScholarPubMed
De Filippo, C, Cavalieri, D, Di Paola, M, et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107, 14691–1466.CrossRefGoogle ScholarPubMed
Hibberd, MC, Wu, M, Rodionov, DA, et al. (2017) The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med 9(390), eaal4069.CrossRefGoogle ScholarPubMed
David, LA, Maurice, CF, Carmody, RN, et al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559563.CrossRefGoogle ScholarPubMed
Yang, Q, Liang, Q, Balakrishnan, B, et al. (2020) Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. Multidisciplinary Digital Publishing Institute; 12, 381.CrossRefGoogle ScholarPubMed
Cotillard, A, Kennedy, SP, Kong, LC, et al. (2013) Dietary intervention impact on gut microbial gene richness. Nature. Nature Publishing Group; 500, 585588.CrossRefGoogle ScholarPubMed
Rocks, T, West, M, Hockey, M, et al. (2021) Possible use of fermented foods in rehabilitation of anorexia nervosa: the gut microbiota as a modulator. Prog Neuropsychopharmacol Biol Psychiatry 107, 110201.CrossRefGoogle ScholarPubMed
Ercolini, D & Fogliano, V. (2018) Food design to feed the human gut microbiota. J Agric Food Chem 66, 37543758.CrossRefGoogle ScholarPubMed
Hanachi, M, Manichanh, C, Schoenenberger, A, et al. (2019) Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition: an explicative factor of functional intestinal disorders? Clin Nutr 38, 23042310.CrossRefGoogle ScholarPubMed
Monteleone, AM, Troisi, J, Fasano, A, et al. (2021) Multi-omics data integration in anorexia nervosa patients before and after weight regain: a microbiome-metabolomics investigation. Clin Nutr 40, 11371146.CrossRefGoogle ScholarPubMed
Schulz, N, Belheouane, M, Dahmen, B, et al. (2021) Gut microbiota alteration in adolescent anorexia nervosa does not normalize with short-term weight restoration. Int J Eat Disord 54, 969980.CrossRefGoogle Scholar
Prochazkova, P, Roubalova, R, Dvorak, J, et al. (2021) The intestinal microbiota and metabolites in patients with anorexia nervosa. Gut Microbes 13, 125.CrossRefGoogle ScholarPubMed