Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T11:21:10.440Z Has data issue: false hasContentIssue false

Glucosinolates and Glucosinolate Derivatives: Implications for Protection Against Chemical Carcinogenesis

Published online by Cambridge University Press:  14 December 2007

Lionelle Nugon-Baudon*
Affiliation:
Unité d'Ecologie et de Physiologie du Système Digestif, Centre de Recherches de Jouy, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cédex, France
Sylvie Rabot
Affiliation:
Unité d'Ecologie et de Physiologie du Système Digestif, Centre de Recherches de Jouy, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cédex, France
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Adams, H., Vaughan, J. G. & Fenwick, G. R. (1989). The use of glucosinolates for cultivar identification in swede, Brassica napus L var napobrassica (L) Peterm. Journal of the Science of Food and Agriculture 46, 319324.CrossRefGoogle Scholar
Akiba, Y. & Matsumoto, T. (1976). Antithyroid activity of goitrin in chicks. Poultry Science 55, 716719.CrossRefGoogle ScholarPubMed
Aspry, K. E. & Bjeldanes, L. F. (1983). Effects of dietary broccoli and butylated hydroxyanisole on liver-mediated metabolism of benzo[α]pyrene. Food and Chemical Toxicology 21, 133142.CrossRefGoogle Scholar
Astwood, E. B., Greer, M. A. & Ettlinger, M. G. (1949). 1-5-vinyl-2-thiooxazolidone, an antithyroid compound from yellow turnip and from brassica seeds. Journal of Biological Chemistry 181, 121130.CrossRefGoogle ScholarPubMed
Austin, F. L., Gent, C. A. & Wolff, I. A. (1968). Degradation of natural thioglucosides with ferrous salts. Journal of Agricultural and Food Chemisty 16, 752755.CrossRefGoogle Scholar
Babish, J. G. & Stoewsand, G. S. (1978). Effect of dietary indole-3-carbinol on the induction of the mixed-function oxidases of rat tissue. Food and Cosmetics Toxicology 16, 151155.CrossRefGoogle ScholarPubMed
Beaune, P. (1982). Les cytochromes P450 des microsomes de foie humain: activités monooxygénasiques et purification partielle (Microsomal P450 Cytochromes in Human Liver: Monoxygenase Activities and Partial Purification), PhD thesis, University of Paris 6, 139 pp.Google Scholar
Beaune, P. (1986). [Liver P450 cytochromes in humans.] Médecine/Sciences 2, 358363.CrossRefGoogle Scholar
Bèll, J. M. (1984). Nutrients and toxicants in rapeseed meal: a review. Journal of Animal Science 58, 9961010.CrossRefGoogle ScholarPubMed
Bell, J. M., Benjamin, B. R. & Giovannetti, P. M. (1972). Histopathology of thyroids and livers of rats and mice fed diets containing Brassica glucosinolates. Canadian Journal of Animal Science 52, 395406.CrossRefGoogle Scholar
Benns, G. B., Hall, J. W. & Beare-Rogers, J. L. (1978). Intake of brassicaceous vegetables in Canada. Canadian Journal of Public Health 69, 6466.Google ScholarPubMed
Bille, N., Eggum, B. O., Jacobsen, I., Olsen, O. & Sorensen, H. (1983). Antinutritional and toxic effects in rats of individual glucosinolates (± myrosinases) added to a standard diet. 1. Effects on protein utilization and organ weights. Zeitschrift für Tierphysiolgie, Tierernährung und Futtermittelkunde 49, 195210.CrossRefGoogle ScholarPubMed
Birt, D. F., Pelling, J. C., Pour, P. M., Tibbels, M. G., Schweickert, L. & Bresnick, E. (1987). Enhanced pancreatic and skin tumorigenesis in cabbage fed hamsters and mice. Carcinogenesis 8, 913917.CrossRefGoogle ScholarPubMed
Bjerg, B. & Sørensen, H. (1987). Quantitative analysis of glucosinolates in oilseed rape based on HPLC of desulfoglucosinolates and HPLC of intact glucosinolates. World Crops: Production, Utilization and Description 13, 125150.Google Scholar
Bock, K. W., Josting, D., Lilienblum, W. & Pfeil, H. (1979). Purification of rat-liver microsomal UDP-glucuronyltransferase: separation of two enzyme forms inducible by 3-methylcholanthrene or phenobarbital European Journal of Biochemistry 98, 1926.CrossRefGoogle ScholarPubMed
Bock, K. W., Lilienblum, W., Fischer, G., Schirmer, G. & Bock-Hennig, B. S. (1987). Induction and inhibition of conjugating enzymes with emphasis on UDP-glucuronyltransferases. Pharmacology and Therapeutics 33, 2327.CrossRefGoogle ScholarPubMed
Booth, E. J., Walker, K. C. & Griffiths, D. W. (1990). Effect of harvest date and pod position on glucosinolates in oilseed rape (Brassica napus). Journal of the Science of Food and Agriculture 53, 4361.CrossRefGoogle Scholar
Bourdon, D., Perez, J.-M. & Baudet, J.-J. (1981). [New types of rapeseed meal fed to growing-finishing pigs: influence of glucosinolates and dehulling]. Journées de la Recherche Porcine en France 13, 163178.Google Scholar
Boyd, J. N., Babish, J. G. & Stoewsand, G. S. (1982). Modification by beet and cabbage diets of aflatoxin B1-induced rat plasma α-foetoprotein elevation, hepatic tumorogenesis, and mutagenicity of urine. Food and Chemical Toxicology 20, 4752.CrossRefGoogle Scholar
Bradfield, C. A. & Bjeldanes, L. F. (1984). Effect of dietary indole-3-carbinol on intestinal and hepatic monooxygenase, glutathione S-transferase and epoxide hydrolyase activities in the rat. Food and Chemical Toxicology 22, 977982.CrossRefGoogle Scholar
Bradfield, C. A. & Bjeldanes, L. F. (1987). High-performance liquid chromatographic analysis of anticarcinogenic indoles in Brassica oleracea. Journal of Agricultural and Food Chemistry 35, 4649.CrossRefGoogle Scholar
Bradlow, H. L., Michnovicz, J. J., Telang, N. T. & Osborne, M. P. (1991). Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis 12, 15711574.CrossRefGoogle ScholarPubMed
Buchwaldt, L., Larsen, L. M., Plöger, A. & Sørensen, H. (1986). Fast polymer liquid chromatography isolation and characterization of plant myrosinase, β-thioglucoside glucohydrolase, isoenzymes. Journal of Chromatography 363, 7180.CrossRefGoogle Scholar
Burchell, B., Jackson, M. R., Coughtrie, M. W. H., Harding, D., Wilson, S. & Bend, J. R. (1987). Molecular characterization of hepatic UDP-glucuronyl transferases. In Drug Metabolism: From Molecules to Man, pp. 4054 [Benford, D.Bridges, J. W. and Gibson, G. G. editors]. London: Taylor and Francis.Google Scholar
Burke, M. D. & Orrenius, S. (1979). Isolation and comparison of endoplasmic reticulum membranes and their mixed function oxidase activities from mammalian extrahepatic tissues. Pharmacology and Therapeutics 7, 549599.CrossRefGoogle ScholarPubMed
Butler, E. J., Pearson, A. W. & Fenwick, G. R. (1982). Problems which limit the use of rapeseed meal as a protein source in poultry diets. Journal of the Science of Food and Agriculture 33, 866875.CrossRefGoogle ScholarPubMed
Caldwell, J. (1979). Minireview. The significance of phase II (conjugation) reactions in drug disposition and toxicity. Life Sciences 24, 571578.CrossRefGoogle Scholar
Caldwell, J. (1980). Conjugation reactions. In Concepts in Drug Metabolism, vol. 10(A), pp. 211217 [Jenner, P. and Testa, B. editors]. Basel: Decker.Google Scholar
Carlson, D. G., Daxenbichler, M. E., vanEtten, C. H., Hill, C. B. & Williams, P. H. (1985). Glucosinolates in radish cultivars. Journal of the American Society for Horticultural Science 110, 634638.CrossRefGoogle Scholar
Carlson, D. G., Daxenbichler, M. E., vanEtten, C. H., Kwolek, W. F. & Williams, P. H. (1987). Glucosinolates in crucifer vegetables: broccoli, Brussels sprouts, cauliflower, collards, kale, mustard greens, and kohlrabi. Journal of the American Society for Horticultural Science 112, 173178.CrossRefGoogle Scholar
Carlson, D. G., Daxenbichler, M. E., vanEtten, C. H., Tookey, H. L. & Williams, P. H. (1981). Glucosinolates in crucifer vegetables: turnips and rutabagas. Journal of Agricultural and Food Chemistry 29, 12351239.CrossRefGoogle ScholarPubMed
Cha, Y. N., Thompson, D. C., Heine, H. S. & Chung, J. H. (1985). Differential effects of indole, indole-3-carbinol and benzofuran on several microsomal and cytosolic enzyme activities in mouse liver. Korean Journal of Pharmacology (Taehan Yakrihak Chapchi) 21, 111.Google Scholar
Chang, Y. & Bjeldanes, L. F. (1985). Effect of dietary R-goitrin on hepatic and intestinal glutathione S-transferase, microsomal epoxide hydratase and ethoxycoumarin O-deethylase activities in the rat. Food and Chemical Toxicology 23, 905909.CrossRefGoogle ScholarPubMed
Chung, F.-L., Wang, M. & Hecht, S. S. (1985). Effects of dietary indoles and isothiocyanates on N-nitrosodimethylamine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone α-hydroxylation and DNA methylation in rat liver. Carcinogenesis 6, 539543.CrossRefGoogle ScholarPubMed
Coles, B. & Ketterer, B. (1990). The role of glutathione and glutathione transferases in chemical carcinogenesis. CRC Critical Reviews in Biochemistry and Molecular Biology 25, 4770.CrossRefGoogle ScholarPubMed
Committee on Diet, Nutrition and Cancer, National Research Council (1982). Diet, Nutrition and Cancer. Washington DC: National Academy Press.Google Scholar
Conney, A. H. (1982). Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Research 42, 48754917.Google Scholar
Daxenbichler, M. E., vanEtten, C. H. & Williams, P. H. (1979). Glucosinolates and derived products in cruciferous vegetables. Analysis of 14 varieties of Chinese cabbage. Journal of Agricultural and Food Chemistry 27, 3437.CrossRefGoogle ScholarPubMed
de Vos, R. H. & Blijleven, W. G. H. (1988). The effect of processing conditions on glucosinolates in cruciferous vegetables. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 187, 525529.CrossRefGoogle ScholarPubMed
Duncan, A. J. & Milne, J. A. (1989). Glucosinolates. In Anti-nutritional Factors, Potentially Toxic Substances in Plants (Aspects of Applied Biology 19), pp. 7592.Google Scholar
Duncan, A. J. & Milne, J. A. (1992). Rumen microbial degradation of allyl cyanide as a possible explanation for the tolerance of sheep to brassica-derived glucosinolates. Journal of the Science of Food and Agriculture 58, 1519.CrossRefGoogle Scholar
Elfving, S. (1980). Studies in the naturally occurring goitrogen 5-vinyl-2-thiooxazolidone. Annals of Clinical Research 12, Suppl. 28, 747.Google Scholar
Etienne, M. & Dourmad, J.-Y. (1987). [Effects of high or low-glucosinolate varieties of rapeseed meal on reproduction in sow]. Journées de la Recherche Porcine en France 19, 231238.Google Scholar
Ettlinger, M. G., Dateo, G. P., Harrison, B. W., Mabry, T. J. & Thompson, C. P. (1961). Vitamin C as a coenzyme: the hydrolysis of mustard oil glucosides. Proceedings of the National Academy of Sciences, USA 47, 18751880.CrossRefGoogle ScholarPubMed
Ettlinger, M. G. & Lundeen, A. J. (1956). The structures of sinigrin and sinalbin; an enzymatic rearrangement. Journal of the American Chemical Society 78, 41724173.CrossRefGoogle Scholar
Fenwick, G. R., Butler, E. J. & Brewster, M. A. (1983). Are brassica vegetables aggravating factors in trimethylaminuria (fish odour syndrome)? Lancet 2, 916.CrossRefGoogle ScholarPubMed
Fenwick, G. R., Heaney, R. K., Hanley, A. B. & Spinks, E. A. (1986). Glucosinolates in food plants. In Food Research Institute, Norwich, Annual Report.Google Scholar
Fenwick, G. R., Heaney, R. K. & Mullin, W. J. (1982). Glucosinolates and their breakdown products in food and food plants. CRC Critical Reviews in Food Science and Nutrition 18, 123201.CrossRefGoogle Scholar
Gil, V. & MacLeod, A. J. (1980). The effects of pH on glucosinolate degradation by a thioglucoside glucohydrolase preparation. Phytochemistry 19, 25472551.CrossRefGoogle Scholar
Goeger, D. E., Shelton, D. W., Hendricks, J. D. & Bailey, G. S. (1986). Mechanisms of anti-carcinogenesis by indole-3-carbinol: effect on the distribution and metabolism of aflatoxin B1 in rainbow trout. Carcinogenesis 7, 20252031.CrossRefGoogle ScholarPubMed
Gould, D. H., Fettman, M. J., Daxenbichler, M. E. & Bartuska, B. M. (1985). Functional and structural alterations of the rat kidney induced by the naturally occurring organonitrile, 2S-1-cyano-2-hydroxy-3,4-epithiobutane. Toxicology and Applied Pharmacology 78, 190201.CrossRefGoogle ScholarPubMed
Graham, S., Dayal, H., Swanson, M., Mittelman, A. & Wilkinson, G. (1978). Diet in the epidemiology of cancer of the colon and rectum. Journal of the National Cancer Institute 61, 709714.Google ScholarPubMed
Graham, S., Schotz, W. & Martino, P. (1972). Alimentary factors in the epidemiology of gastric cancer. Cancer 30, 927938.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Greer, M. A. (1962). The natural occurrence of goitrogenic agents. Recent Progress in Hormone Research 18, 187219.Google Scholar
Greer, M. A. & Astwood, E. B. (1948). The antithyroid effect of certain foods in man as determined with radioactive iodine. Endocrinology 43, 105119.CrossRefGoogle Scholar
Greer, M. A. & Deeney, J. M. (1959). Antithyroid activity elicited by the ingestion of pure progoitrin, a naturally occurring thioglycoside of the turnip family. Journal of Clinical Investigation 38, 14651474.CrossRefGoogle ScholarPubMed
Guengerich, F. P. (1989). Polymorphism of cytochrome P-450 in humans. Trends in Pharmacological Sciences 10, 107109.CrossRefGoogle ScholarPubMed
Guengerich, F. P., Dannan, G. A., Wright, S. T., Martin, M. V. & Kaminsky, L. S. (1982). Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immuno-chemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or β-naphthoflavone. Biochemistry 21, 60196030.CrossRefGoogle ScholarPubMed
Habig, W. H., Pabst, M. J. & Jakoby, W. B. (1974). Glutathione-S-Transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 71307139.CrossRefGoogle ScholarPubMed
Haenszel, W., Locke, F. B. & Segi, M. (1980). A case-control study of large bowel cancer in Japan. Journal of the National Cancer Institute 64, 1722.Google ScholarPubMed
Heaney, R. K. & Fenwick, G. R. (1980 a). Glucosinolates in Brassica vegetables. Analysis of 22 varieties of Brussels sprout (Brassica oleracea var. gemmifera). Journal of the Science of Food and Agriculture 31, 785793.CrossRefGoogle Scholar
Heaney, R. K. & Fenwick, G. R. (1980 b). The glucosinolate content of Brassica vegetables. A chemotaxonomic approach to cultivar identification. Journal of the Science of Food and Agriculture 31, 794801.CrossRefGoogle Scholar
Hendrich, S. & Bjeldanes, L. F. (1983). Effects of dietary cabbage, Brussels sprouts, Illicium verum, Schizandra chinensis and alfalfa on the benzo[a]pyrene metabolic system in mouse liver. Food and Chemical Toxicology 21, 479486.CrossRefGoogle Scholar
Jakoby, W. B. (1978). The glutathione S-transferases: a group of multifunctional detoxification proteins. Advances in Enzymology 46, 383414.Google ScholarPubMed
Jakoby, W. B. (1980). Enzymatic Basis of Detoxication, vol. 1. London: Academic Press.Google Scholar
Josefsson, E. (1970). Glucosinolate content and amino acid composition of rapeseed (Brassica napus) meal as affected by sulphur and nitrogen nutrition. Journal of the Science of Food and Agriculture 21, 98103.CrossRefGoogle Scholar
Kato, R. (1979). Characteristics and differences in the hepatic mixed function oxidases of different species. Pharmacology and Therapeutics 6, 4198.CrossRefGoogle ScholarPubMed
Kore, A. M., Jeffery, E. H. & Wallig, M. A. (1993). Effects of 1-isothiocyanato-3-(methylsulfinyl)-propane on xenobiotic metabolizing enzymes in rats. Food and Chemical Toxicology 31, 723729.CrossRefGoogle ScholarPubMed
Krusius, F.-E. & Peltola, P. (1966). The goitrogenic effect of naturally occurring l-5-vinyl and l-5-phenyl-2-thio-oxazolidone in rats. Acta Endocrinologica 53, 342352.Google ScholarPubMed
Langer, P. & Greer, M. A. (1968). Antithyroid activity of some naturally occurring isothiocyanates in vitro. Metabolism 17, 596605.CrossRefGoogle ScholarPubMed
Langer, P. & Michajlovskij, N. (1969). Studies on the antithyroid activity of naturally occurring l-5-vinyl-2-thiooxazolidone and its urinary metabolite in rats. Acta Endocrinologica 62, 2130.Google ScholarPubMed
Langer, P., Michajlovskij, N., Sedlák, J. & Kutka, M. (1971). Studies on the antithyroid activity of naturally occurring l-5-vinyl-2-thiooxazolidone in man. Endokrinologie 57, 225229.Google ScholarPubMed
Langer, P. & Stolc, V. (1965). Goitrogenic activity of allylisothiocyanate — a widespread natural mustard oil. Endocrinology 76, 151155.CrossRefGoogle ScholarPubMed
Lanzani, A., Piana, G., Piva, G., Cardillo, M., Rastelli, A. & Jacini, G. (1974). Changes in Brassica napus progoitrin induced by sheep rumen fluid. Journal of the American Oil Chemists' Society 51, 517518.CrossRefGoogle ScholarPubMed
Lehrmann, P. (1989). [Rapeseed: glucosinolate variability]. Cultivar 245, 4446.Google Scholar
Lewis, J. & Fenwick, G. R. (1987). Glucosinolate content of Brassica vegetables: analysis of twenty-four cultivars of calabrese (green sprouting broccoli, Brassica oleracea L. var. botrytis subvar. cymosa Lam.). Food Chemistry 25, 259268.CrossRefGoogle Scholar
Lewis, J. & Fenwick, G. R. (1988). Glucosinolate content of brassica vegetables — Chinese cabbages pe-tsai (Brassica pekinensis) and pak-choi (Brassica chinensis). Journal of the Science of Food and Agriculture 45, 379386.CrossRefGoogle Scholar
Linscheid, M., Wendisch, D. & Strack, D. (1980). The structures of sinapic acid esters and their metabolism in cotyledons of Raphanus sativus. Zeitschrift für Naturforschung 35C, 907914.CrossRefGoogle Scholar
Lo, M.-T. & Bell, J. M. (1972). Effects of various dietary glucosinolates on growth, feed intake, and thyroid function of rats. Canadian Journal of Animal Science 52, 295302.CrossRefGoogle Scholar
Lo, M. T. & Hill, D. C. (1971). Effect of feeding a high level of rapeseed meal on weight gains and thyroid function of rats. Journal of Nutrition 101, 975980.CrossRefGoogle ScholarPubMed
Loub, W. D., Wattenberg, L. W. & Davis, D. W. (1975). Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. Journal of the National Cancer Institute 54, 985988.Google ScholarPubMed
McDanell, R. E., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1987). Differential induction of mixed-function oxidase (MFO) activity in rat liver and intestine by diets containing processed cabbage: correlation with cabbage levels of glucosinolates and glucosinolate hydrolysis products. Food and Chemical Toxicology 25, 363368.CrossRefGoogle ScholarPubMed
McDanell, R. E., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1988). Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food and Chemical Toxiology 26, 5970.CrossRefGoogle ScholarPubMed
McDanell, R. E., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. (1989). The effect of feeding Brassica vegetables and intact glucosinolates on mixed-function-oxidase activity in the livers and intestines of rats. Food and Chemical Toxicology 27, 289293.CrossRefGoogle ScholarPubMed
McMillan, M., Spinks, E. A. & Fenwick, G. R. (1986). Preliminary observations on the effect of dietary Brussels sprouts on thyroid function. Human Toxicology 5, 1519.CrossRefGoogle ScholarPubMed
Mannervik, B. (1985). The isoenzymes of glutathione transferase. Advances in Enzymology 57, 357417.Google ScholarPubMed
Marangos, A. & Hill, R. (1974). The hydrolysis and absorption of thioglucosides of rapeseed meal. Proceedings of the Nutrition Society 33, 90A.Google ScholarPubMed
Michnovicz, J. J. & Bradlow, H. L. (1991). Altered estrogen metabolism and excretion in humans following consumption of indole-3-carbinol. Nutrition and Cancer 16, 5966.CrossRefGoogle ScholarPubMed
Miguchi, S., Kojima, T. & Fukuzawa, M. (1974). Goitrogenic substance in rapeseed. V. The myrosinase-like activity of intestinal bacteria of chickens. Journal of Food Science and Technology 21, 215222.CrossRefGoogle Scholar
Miller, K. W. & Stoewsand, G. S. (1983). Hepatic polysubstrate monooxygenase activities in different strains of rats fed cabbage (Brassica oleracea). Drug and Chemical Toxicology 6, 93110.CrossRefGoogle ScholarPubMed
Mullin, W. J. & Sahasrabudhe, M. R. (1978). An estimate of the average daily intake of glucosinolates via cruciferous vegetables. Nutrition Reports international 18, 273279.Google Scholar
Muztar, A. J., Huque, T., Ahmad, P. & Slinger, S. J. (1979). Effect of allyl isothiocyanate on plasma and urinary concentrations of some biochemical entities in the rat. Canadian Journal of Physiology and Pharmacology 57, 504509.CrossRefGoogle ScholarPubMed
Nebert, D. W., Nelson, D. R., Adesnik, M., Coon, M. J., Estabrook, R. W., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Kemper, B., Levin, W., Phillips, I. R., Sato, R. & Waterman, M. R. (1989). The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromsomal loci. DNA 8, 113.CrossRefGoogle Scholar
Nishie, K. & Daxenbichler, M. E. (1980). Toxicology of glucosinolates, related compounds (nitriles, R-goitrin, isothiocyanates) and vitamin U found in Cruciferae. Food and Cosmetic Toxicology 18, 159172.CrossRefGoogle ScholarPubMed
Nugon-Baudon, L., Rabot, S., Flinois, J. P., Beaune, P. & Szylit, O. (1991). Glucosinolate interactions with the hepatic xenobiotic metabolizing enzymes (XME): influence of the intestinal microflora. In Proceedings of the GCIRC 8th International Rapeseed Congress, pp. 402407 [McGregor, , editor].Google Scholar
Nugon-Baudon, L., Rabot, S., Szylit, O. & Raibaud, P. (1990 a). Glucosinolates toxicity in growing rats: interactions with the hepatic detoxification system. Xenobiotica 20, 223230.CrossRefGoogle ScholarPubMed
Nugon-Baudon, L., Rabot, S., Wal, J.-M. & Szylit, O. (1990 b). Interactions of the intestinal microflora with glucosinolates in rapeseed meal toxicity: first evidence of an intestinal lactobacillus possessing a myrosinase-like activity in vivo. Journal of the Science of Food and Agriculture 52, 547559.CrossRefGoogle Scholar
Nugon-Baudon, L., Szylit, O. & Raibaud, P. (1988). Production of toxic glucosinolate derivatives from rapeseed meal by intestinal microflora of rat and chicken. Journal of the Science of Food and Agriculture 43, 299308.CrossRefGoogle Scholar
Oginsky, E. L., Stein, A. E. & Greer, M. A. (1965). Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proceedings of the Society for Experimental Biology and Medicine 119, 360364.CrossRefGoogle ScholarPubMed
Ohtsuru, M. & Hata, T. (1979). The interaction of L-ascorbic acid with the active center of myrosinase. Biochimica et Biophysica Acta 567, 384391.CrossRefGoogle ScholarPubMed
Ozierenski, B., Plass, R. & Lewerenz, H.-J. (1993). Effects of glucosinolate breakdown products on the hepatic biotransformation system in male rats. Nahrung 37, 514.CrossRefGoogle ScholarPubMed
Pantuck, E. J., Hsiao, K.-C., Loub, W. D., Wattenberg, L. W., Kuntzman, R. & Canney, A. H. (1976). Stimulatory effect of vegetables on intestinal drug metabolism in the rat. Journal of Pharmacology and Experimental Therapeutics 198, 278283.Google ScholarPubMed
Pantuck, E. J., Pantuck, C. B., Anderson, K. E., Wattenberg, L. W., Conney, A. H. & Kappas, A. (1984). Effect of Brussels sprouts and cabbage on drug conjugation. Clinical Pharmacology and Therapeutics 35, 161169.CrossRefGoogle ScholarPubMed
Pantuck, E. J., Pantuck, C. B., Garland, W. A., Min, B. H., Wattenberg, L. W., Anderson, K. E., Kappas, A. & Conney, A. H. (1979). Stimulatory effect of Brussels sprouts and cabbage on human drug metabolism. Clinical Pharmacology and Therapeutics 25, 8895.CrossRefGoogle ScholarPubMed
Pence, B. C., Buddingh, F. & Yang, S. P. (1986). Multiple dietary factors in the enhancement of dimethylhydrazine carcinogenesis: main effect of indole-3-carbinol. Journal of the National Cancer Institute 77, 269276.Google ScholarPubMed
Pickett, C. B. & Lu, A. Y. H. (1989). Glutathione S-transferases: gene structure, regulation, and biological function. Annual Review of Biochemistry 58, 743764.CrossRefGoogle ScholarPubMed
Quinsac, A. (1993). Les glucosinolates et leurs dérivés dans les cruciferes. Analyse par chromatographie en phase liquide et perspectives d'utilisation de l' électrophorèse capillaire (Glucosinolates and glucosinolate derivatives in cruciferous plants. HPLC analysis and the possibilities of capillary electrophoresis), PhD Thesis, University of Orléans, 143 pp.Google Scholar
Rabot, S., Nugon-Baudon, L., Boutemine, Y., Raibaud, P. & Szylit, O. (1990). Incidence of three human digestive bacterial strains on rapeseed meal toxicity in gnotobiotic rats. Microecology and Therapy 20, 135140.Google Scholar
Rabot, S., Nugon-Baudon, L., Popot, F. & Szylit, O. (1991). Preliminary studies on the modulation of rapeseed meal toxicity in conventional rats by poorly digestible carbohydrates. In Proceedings of the GCIRC 8th International Rapeseed Congress, pp. 15611566. [McGregor, , editor].Google Scholar
Rabot, S., Nugon-Baudon, L., Raibaud, P. & Szylit, O. (1993 a). Rapeseed meal toxicity in gnotobiotic rats: influence of a whole human faecal flora or single human strains of Escherichia coli and Bacteroides vulgatus. British Journal of Nutrition 70, 323331.CrossRefGoogle ScholarPubMed
Rabot, S., Nugon-Baudon, L. & Szylit, O. (1993 b). Alterations of the hepatic xenobiotic-metabolizing enzymes by a glucosinolate-rich diet in germ-free rats: influence of a pre-induction with phenobarbital. British Journal of Nutrition 70, 347354.CrossRefGoogle ScholarPubMed
Rowland, I. R. (1988). Interactions of the gut microflora and the host in toxicology. Toxicologic Pathology 16, 147153.CrossRefGoogle ScholarPubMed
Salbe, A. D. & Bjeldanes, L. F. (1989). Effect of diet and route of administration on the DNA binding of aflatoxin B1 in the rat. Carcinogenesis 10, 629634.CrossRefGoogle ScholarPubMed
Sang, J. P., Minchinton, I. R., Johnstone, P. K. & Truscott, R. J. W. (1984). Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Canadian Journal of Plant Science 64, 7793.CrossRefGoogle Scholar
Searle, L. M., Chamberlain, K. & Butcher, D. N. (1984). Preliminary studies on the effects of copper, iron and manganese ions on the degradation of 3-indolylmethyl-glucosinolate (a constituent of Brassica spp.) by myrosinase. Journal of the Science of Food and Agriculture 35, 745748.CrossRefGoogle Scholar
Searle, L. M., Chamberlain, K., Rausch, T. & Butcher, D. N. (1982). The conversion of 3-indolylmethyl-glucosinolate to 3-indolylacetonitrile by myrosinase and its relevance to the clubroot disease of the Cruciferae. Journal of Experimental Botany 33, 935942.CrossRefGoogle Scholar
Seardic, D., Pasanen, M., Pelkonen, O. & Boobis, A. R. (1990). Differential expression and regulation of members of the cytochrome P450IA gene subfamily in human tissues. Carcinogenesis 11, 11831188.CrossRefGoogle Scholar
Shertzer, H. G. (1982). Indole-3-carbinol and indole-3-acetonitrile influence on hepatic microsomal metabolism. Toxicology and Applied Pharmacology 64, 353361.CrossRefGoogle ScholarPubMed
Shertzer, H. G. (1983). Protection by indole-3-carbinol against covalent binding of benzo[a]pyrene Metabolites to mouse liver DNA and protein. Food and Chemical Toxicology 21, 3135.CrossRefGoogle Scholar
Shertzer, H. G. (1984). Indole-3-carbinol protects against covalent binding of benzo[a]pyrene and N-nitrosodimethylamine metabolites to mouse lever macromolecules. Chemico-Biological Interactions 48, 8190.CrossRefGoogle Scholar
Slominski, B. A. & Campbell, L. D. (1989). Formation of indole glucosinolate breakdown products in autolyzed, steamed, and cooked Brassica vegetables. Journal of Agricultural and Food Chemistry 37, 12971302.CrossRefGoogle Scholar
Sones, K., Heaney, R. K. & Fenwick, G. R. (1984 a). An estimate of the mean daily intake of glucosinolates from cruciferous vegetables in the UK. Journal of the Science of Food and Agriculture 35, 712720.CrossRefGoogle Scholar
Sones, K., Heaney, R. K. & Fenwick, G. R. (1984 b). Glucosinolates in Brassica vegetables. Analysis of twenty-seven cauliflower cultivars (Brassica oleracea L. var. botrytis subvar. cauliflora DC). Journal of the Science of Food and Agriculture 35, 762766.CrossRefGoogle Scholar
Sparnins, V. L., Venegas, P. L. & Wattenberg, L. W. (1982). Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. Journal of the National Cancer Institute 68, 493496.Google ScholarPubMed
Srisangnam, C., Hendricks, D. G., Sharma, R. P., Salunkhe, D. K. & Mahoney, A. W. (1980 a). Effects of dietary cabbage (Brassica oleracea L.) on the tumorigenicity of 1,2-dimethylhydrazine in mice. Journal of Food Safety 2, 235245.CrossRefGoogle Scholar
Srisangnam, C., Salunkhe, D. K., Reddy, N. R. & Dull, G. G. (1980 b). Quality of cabbage. II. Physical, chemical, and biochemical modification in processing treatments to improve flavor in blanched cabbage (Brassica oleracea L.). Journal of Food Quality 3, 233250.CrossRefGoogle Scholar
Srivastava, V. K., Philbrick, D. J. & Hill, D. C. (1975). Response of rats and chicks to rapessed meal subjected to different enzymatic treatments. Canadian Journal of Animal Science 55, 331335.CrossRefGoogle Scholar
Stoewsand, G. S., Anderson, J. L. & Munson, L. (1988). Protective effect of dietary Brussels sprouts against mammary carcinogenesis in Sprague-Dawley rats. Cancer Letters 39, 199207.CrossRefGoogle ScholarPubMed
Stoewsand, G. S., Babish, J. B. & Wimberly, H. C. (1978). Inhibition of hepatic toxicities from polybrominated biphenyls and aflatoxin, B1 in rats fed cauliflower. Journal of Environmental Pathology and Toxicology 2, 399406.Google Scholar
Szabo, S., Bailey, K. A., Boor, P. J. & Jaeger, R. J. (1977). Acrylonitrile and tissue glutathione: differential effect of acute and chronic interactions. Biochemical and Biophysical Research Communications 79, 3237.CrossRefGoogle ScholarPubMed
Tanaka, T., Mori, Y., Morishita, Y., Hara, A., Ohno, T., Kojima, T. & Mori, H. (1990). Inhibitory effect of sinigrin and indole-3-carbinol on diethylnitrosamine-induced hepatocarcinogenesis in male ACI/N rats. Carcinogenesis 11, 14031406.CrossRefGoogle ScholarPubMed
Tani, N., Ohtsuru, M. & Hata, T. (1974). Isolation of myrosinase producing microorganism. Agricultural and Biological Chemistry 38, 16171622.Google Scholar
Timms, C., Schladt, L., Robertson, L., Rauch, P., Schramm, H. & Oesch, F. (1987). The regulation of rat liver epoxide hydrolases in relation to that of other drug-metabolizing enzymes. In Drug Metabolism: From Molecules to Man, pp. 5568 [Benford, D.Bridges, J. W. and Gibson, G. G. editors]. London: Taylor and Francis.Google Scholar
Tookey, H. L. (1973). Crambe thioglucoside glucohydrolase (EC 3.2.3.1): separation of a protein required for epithiobutane formation. Canadian Journal of Biochemistry 51, 16541660.CrossRefGoogle ScholarPubMed
Tookey, H. L. & Wolff, I. A. (1970). Effect of organic reducing agents and ferrous ion on thioglucosidase activity of Crambe abyssinica seed. Canadian Journal of Biochemistry 48, 10241028.CrossRefGoogle ScholarPubMed
Uda, Y., Kurata, T. & Arakawa, N. (1986). Effects of pH and ferrous ion on the degradation of glucosinolates by myrosinase. Agricultural and Biological Chemistry 50, 27352740.Google Scholar
Ullrich, D. & Bock, K. W. (1984). Glucuronide formation of various drugs in liver microsomes and in isolated hepatocytes from phenobarbital-and 3-methylcholanthrene-treated rats. Biochemical Pharmacology 33, 97101.CrossRefGoogle ScholarPubMed
vanEtten, C. H., Daxenbichler, M. E., Peters, J. E. & Tookey, H. L. (1966). Variation in enzymatic degradation products from the major thioglucosides in Crambe abyssinica and Brassica napus seed meals. Journal of Agricultural and Food Chemistry 14, 426430.CrossRefGoogle Scholar
vanEtten, C. H., Daxenbichler, M. E. & Wolff, I. A. (1969). Natural glucosinolates (thioglucosides) in foods and feeds. Journal of Agricultural and Food Chemistry 17, 483491.CrossRefGoogle Scholar
Vermorel, M., Davicco, M.-J. & Evrard, J. (1987). Valorization of rapeseed meal. 3. Effects of glucosinolate content on food intake, weight gain, liver weight and plasma thyroid hormone levels in growing rats. Reproduction, Nutrition, Développment 27, 5766.CrossRefGoogle ScholarPubMed
Vermorel, M. & Evard, J. (1987). Valorization of rapeseed meal. 4. Effects of iodine, copper and ferrous salt supplementation in growing rats. Reproduction, Nutrition, Développment 27, 769779.CrossRefGoogle ScholarPubMed
Vermorel, M., Heaney, R. K. & Fenwick, G. R. (1986). Nutritive value of rapeseed meal: effects of individual glucosinolates. Journal of the Science of Food and Agriculture 37, 11971202.CrossRefGoogle Scholar
Wattenberg, L. W. (1971). Studies of polycyclic hydrocarbon hydroxylases of the intestine possibly related to cancer. Effect of diet on benzpyrene hydroxylase activity. Cancer 28, 99102.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Watenberg, L. W., Hanley, A. B., Barany, G., Sparnins, V. L., Lam, L. K. T. & Fenwick, G. R. (1986). Inhibition of carcinogenesis by some minor dietary components. In Diet, Nutrition and Cancer, pp. 1321 [Hayashi, Y. et al. editors]. Tokyo: VNU Science.Google Scholar
Wattenberg, L. W. & Loub, W. D. (1978). Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally-occurring indoles. Cancer Research 38, 14101413.Google ScholarPubMed
Wishart, G. J. (1978). Demonstration of functional heterogeneity of hepatic uridine diphosphate glucuronosyl-transferase activities after administration of 3-methylcholanthrene and phenobarbital to rats. Biochemical Journal 174, 671672.CrossRefGoogle Scholar
Wortelboer, H. M. (1991). Primary hepatocyte cultures as a model system for the determination of induction of biotransformation enzymes. Effects of glucosinolate hydrolysis products. PhD Thesis, University of Utrecht, 145 pp.Google Scholar
Wortelboer, H. M., de Kruif, C. A., van Iersel, A. A. J., Noordhoek, J., Blaauboer, B. J., van Bladeren, P. J. & Falke, H. E. (1992). Effects of cooked Brussels sprouts on cytochrome P-450 profile and phase II enzymes in liver and small intestinal mucosa of the rat. Food and Chemical Toxicology 30, 1727.CrossRefGoogle ScholarPubMed
Wrighton, S. A., Campanile, C., Thomas, P. E., Maines, S. L., Watkins, P. B., Parker, G., Mendez-Picon, G., Haniu, M., Shively, J. E., Levin, W. & Guzelian, P. S. (1986). Identification of a human liver cytochrome P-450 homologous to the major isosafrole-inducible cytochrome P-450 in the rat. Molecular Pharmacology 29, 405410.Google Scholar
Youngs, C. G. & Perlin, A. S. (1967). Fe(II)-catalyzed decomposition of sinigrin and related thioglycosides. Canadian Journal of Chemistry 45, 18011804.CrossRefGoogle Scholar
Zhang, Y., Talalay, P., Cho, C.-G. & Posner, G. H. (1992). A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proceedings of the National Academy of Sciences, USA 89, 23992403.CrossRefGoogle Scholar