Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T12:42:41.930Z Has data issue: false hasContentIssue false

The essentiality of sulfur is closely related to nitrogen metabolism: a clue to hyperhomocysteinaemia

Published online by Cambridge University Press:  14 December 2007

Yves Ingenbleek*
Affiliation:
Laboratory of Nutrition, Faculty of Pharmacy, University Louis Pasteur, 74 Route du Rhin, 67401 Illkirch, France
Vernon R Young
Affiliation:
Laboratory of Human Nutrition, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA O2139-4307, USA
*
Corresponding author: Dr Yves Ingenbleek, fax +33 390 24 43 17, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

N and S metabolisms are closely interwoven throughout both the plant and animal kingdoms. The essentiality of S relates to its participation in the structure of S-containing amino acids (SAA), to its inclusion in many sulfonated molecules, and to a myriad of metabolic and catalytic reactions of vital importance. Methionine (Met) is the indispensable SAA supplied by food proteins and its plasma homeostasis is achieved via a number of highly efficient regulatory mechanisms. In all conditions characterised by a negative body protein balance such as in dietary restriction or cytokine-induced hypercatabolic losses, N and S endogenous pools manifest parallel tissue depletion rates. Adaptive conservation of N and S body stores is reached by a functional restraint of the trans-sulfuration cascade, through the depression of cystathionine β-synthase activity. As a result, upstream accumulation of homocysteine favours its re-methylation conversion to Met which helps maintain metabolic pathways of survival value. In addition to the measurement of vitamin indices, that of plasma transthyretin, a sensitive marker of protein nutritional status, is proposed to identify the fluctuations of the total body N component accountable for the alterations of homocysteine concentrations in body fluids.

Type
Research Article
Copyright
Copyright © The Authors 2004

References

Abbott, WA, Bridges, RJ & Meister, A (1984) Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney. Journal of Biological Chemistry 259, 1539315400.CrossRefGoogle ScholarPubMed
Adibi, SA, Gray, SJ & Menden, E (1967) The kinetics of amino acid absorption and alteration of plasma composition of free amino acids after intestinal perfusion of amino acid mixtures. American Journal of Clinical Nutrition 20, 2433.CrossRefGoogle ScholarPubMed
Aguilar, TS, Benevenga, NJ & Harper, AE (1974) Effect of dietary methionine level on its metabolism in rats. Journal of Nutrition 104, 761771.CrossRefGoogle ScholarPubMed
Andersen, BN, Petersen, B, Borch, K & Rehfeld, JF (1983) Variations in the sulfation of circulating gastrins in gastrointestinal diseases. Scandinavian Journal of Gastroenterology 18, 565569.CrossRefGoogle ScholarPubMed
Anderson, ME, Allison, RD & Meister, A (1982) Interconversion of leukotrienes catalyzed by purified γ-glutamyltranspeptidase: concomitant formation of leukotriene D4 and γ-glutamyl amino acids. Proceedings of the National Academy of Sciences USA 79, 10881091.CrossRefGoogle ScholarPubMed
Antener, I, Tonney, G, Verwilghen, AM & Mauron, J (1981 a) Biochemical study of malnutrition. IV. Determination of amino acids in the serum, erythrocytes, urine and stool ultrafiltrates. International Journal of Vitamin and Nutrition Research 51, 6478.Google ScholarPubMed
Antener, I, Verwilghen, AM, van Geert, C & Mauron, J (1981 b) Biochemical study of malnutrition. V. Metabolism of phenylalanine and tyrosine. International Journal of Vitamin and Nutrition Research 51, 297306.Google ScholarPubMed
Arroyave, G, Wilson, D, de Funés, C & Béhar, M (1962) The free amino acids in blood plasma of children with kwashiorkor and marasmus. American Journal of Clinical Nutrition 11, 517524.CrossRefGoogle Scholar
Awwaad, S, Eisa, EA & El-Essawy, M (1962) Methionine metabolism in kwashiorkor in Egyptian children. Transactions of the Royal Society of Tropical Medicine and Hygiene 56, 179181.Google Scholar
Axelson, M (1985) 25-Hydroxyvitamin D, 3 3-sulfate is a major circulating form of vitamin D, in man. FEBS, Letters 191, 171175.CrossRefGoogle Scholar
Baker, DH (1976) Nutritional and metabolic interrelationships among sulfur compounds in avian nutrition. Federation Proceedings 35, 19171922.Google ScholarPubMed
Baladoo, A, Reid, M, Forrester, T, Heird, WC & Jahoor, F (2002) Cystein supplementation improves the erythrocyte glutathione synthesis rate in children with severe edematous malnutrition. American Journal of Clinical Nutrition 76, 646652.Google Scholar
Baldessarini, RJ & Fisher, JE (1967) S-adenosylmethionine following portocaval anastomoses. Surgery 62, 311318.Google Scholar
Banerjee, RV & Mathews, RG (1990) Cobalamin-dependent methionine synthase. FASEB Journal 4, 14501459.CrossRefGoogle ScholarPubMed
Beach, EF, Teague, DM, Hoffman, OD, Munks, B, Hummel, FC, Williams, HH & Macy, IG (1942) The sulfur metabolism in children. Journal of Nutrition 24, 257271.CrossRefGoogle Scholar
Beaulieu, EE (1998) Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23, 963987.CrossRefGoogle Scholar
Benevenga, NJ (1974) Toxicities of methionine and other amino acids. Journal of Agricultural and Food Chemistry 22, 29.CrossRefGoogle ScholarPubMed
Bergmann, L (1981) Aspects of S- and N-metabolism in tissue cultures. In Biology of Inorganic Nitrogen and Sulfur pp.341351 [Bothe, H and rebst, A editors]. Berlin: Springer Verlag.CrossRefGoogle Scholar
Betz, SF (1993) Disulfide bonds and the stability of globular proteins. Protein Science 2, 15511558.CrossRefGoogle ScholarPubMed
Beutler, E (1989) Nutritional and metabolic aspects of glutathione. Annual Review of Nutrition 9, 287302.CrossRefGoogle ScholarPubMed
Bielinska, M (1987) Sulfation of the choriogonadotrophin α-subunit in human placental extracts. Biochemical and Biophysical Research Communications 148, 14461452.CrossRefGoogle Scholar
Bienvenu, J, Jeppson, JO & Ingenbleek, Y (1996) Transthyretin (prealbumin) & retinol-binding protein. In Serum Proteins in Clinical Medicine pp. 9·011–9·018 [Ritchie, RF and Navolotskaia, O editors]. Scarborough: Foundation for Blood Research.Google Scholar
Bragt, PC & Bonta, IL (1980) Oxidant stress during inflammation: anti-inflammatory effects of antioxidants. Agents and Actions 10, 536539.CrossRefGoogle ScholarPubMed
Brattström, L (1997) Common mutation in the methylenetetrahydrofate reductase gene offers no support for mild hyperhomocysteinemia being a causal risk factor for cardiovascular disease. Circulation 96, 38053807.Google ScholarPubMed
Bremner, I & Beattie, JH (1990) Metallothionein and the trace minerals. Annual Review of Nutrition 10, 6383.CrossRefGoogle ScholarPubMed
Brookes, IM, Owens, FN & Garrigus, US (1972) Influence of amino acid level in the diet upon amino acid oxidation by the rat. Journal of Nutrition 102, 2735.CrossRefGoogle ScholarPubMed
Buhl, R, Holroyd, KJ, Mastrangeli, A, Cantin, AM, Jaffe, HA, Wells, FB, Saltini, C & Crystal, RG (1989) Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet ii, 12941298.CrossRefGoogle Scholar
Burns, RA & Milner, JA (1981) Sulfur amino acid requirements of immature beagle dogs. Journal of Nutrition 111, 21172124.CrossRefGoogle ScholarPubMed
Cabrero, C, Duce, AM, Ortiz, P, Alemany, S & Mato, JM (1988) Specific loss of the high molecular form of S-adenosyl-L-methionine synthetase in human liver cirrhosis. Hepatology 8, 15301534.CrossRefGoogle ScholarPubMed
Cantoni, GL (1951) Activation of methionine for transmethylation. Journal of Biological Chemistry 189, 745754.CrossRefGoogle ScholarPubMed
Cantoni, GL (1985) The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Progress in Clinical and Biological Research 198, 4765.Google ScholarPubMed
Carpenter, KJ (1992) Protein requirements of adults from an evolutionary perspective. American Journal of Clinical Nutrition 55, 913917.CrossRefGoogle ScholarPubMed
Caudill, MA, Wang, JC, Melnyk, S, Pogribny, IP, Jernigan, S, Collins, MD, Santos-Guzman, J, Swendseid, ME, Cogger, EA & James, SJ (2001) Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionase-β-synthase heterozygous mice. Journal of Nutrition 131, 28112818.CrossRefGoogle ScholarPubMed
Chance, B, Sies, H & Boveris, A (1979) Hydroperoxide metabolism in mammalian organs. Physiological Reviews 59, 527605.CrossRefGoogle ScholarPubMed
Chawla, RK, Berry, CJ, Kutner, MH & Rudman, D (1985) Plasma concentrations of transsulfuration pathway products during nasoenteral and intravenous hyperalimentation of malnourished patients. American Journal of Clinical Nutrition 42, 577584.CrossRefGoogle ScholarPubMed
Cooper, AJL (1983) Biochemistry of sulfur-containing amino acids. Annual Review of Biochemistry 52, 187222.CrossRefGoogle ScholarPubMed
Cuthbertson, DP (1931) The distribution of nitrogen and sulphur in the urine during conditions of increased catabolism. Biochemical Journal 25, 236244.CrossRefGoogle ScholarPubMed
Datko, AH, Mudd, SH, Giovanelli, J & Macnicol, PK (1978) Sulfur-containing compounds in Lemna perpusilla 6746 grown at a range of sulfate concentrations. Plant Physiology 62, 629635.CrossRefGoogle Scholar
Dierkes, J, Jeckel, A, Ambrosch, A, Westphal, S, Luley, C & Boeing, H (2001) Factors explaining the difference of total homocysteine between men and women in the European Investigation into Cancer and Nutrition Potsdam Study. Metabolism 50, 640645.CrossRefGoogle ScholarPubMed
Dijkshoorn, W, van Wijk, AL (1967) The sulphur requirements of plants as evidenced by the sulphur-nitrogen ratio in the organic matter. A review of published data. Plant and Soil 26, 129157.CrossRefGoogle Scholar
Dröge, W, Eck, HP, Gmunder, H & Mihm, S (1991) Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. American Journal of Medicine 91, Suppl. 3C, 140S144S.CrossRefGoogle ScholarPubMed
El-Khoury, AE, Fukagawa, NK, Sànchez, M, Tsay, RH, Gleason, RE, Chapman, TE & Young, VR (1994) The 24-h pattern and rate of leucine oxidation, with particular reference to tracer estimates of leucine requirements in healthy adults. American Journal of Clinical Nutrition 59, 10121020.CrossRefGoogle ScholarPubMed
Ericson, LE, Williams, JN Jr, Elvehjem, CA (1955) Studies on partially purified betaine-homocysteine transmethylase of liver. Journal of Biological Chemistry 212, 537544.CrossRefGoogle ScholarPubMed
Fahey, RC, Hunt, JS & Windham, GC (1977) On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. Journal of Molecular Evolution 10, 155160.CrossRefGoogle ScholarPubMed
Farooqui, AA (1980) 3'-Phosphoadenosine 5'-phosphosulfate: metabolism in mammalian tissues. International Journal of Biochemistry 12, 529535.CrossRefGoogle ScholarPubMed
Finkelstein, JD (1974) Methionine metabolism in mammals: the biochemical basis for homocystinuria. Metabolism 23, 387398.CrossRefGoogle ScholarPubMed
Finkelstein, JD (1990) Methionine metabolism in mammals. Journal of Nutritional Biochemistry 1, 228237.CrossRefGoogle ScholarPubMed
Finkelstein, JD (2000) Homocysteine: a history in progress. Nutrition Reviews 58, 193204.CrossRefGoogle ScholarPubMed
Finkelstein, JD, Kyle, WE, Martin, JJ & Pick, AM (1975) Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochemical and Biophysical Research Communications 66, 8187.CrossRefGoogle ScholarPubMed
Finkelstein, JD & Martin, JJ (1984 a) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. Journal of Biological Chemistry 259, 95089513.CrossRefGoogle ScholarPubMed
Finkelstein, JD & Martin, JJ (1984 b) Inactivation of betaine-homocysteine methyltransferase by adenosylmethionine and adenosylhomocysteine. Biochemical and Biophysical Research Communications 118, 1419.CrossRefGoogle Scholar
Finkelstein, JD & Martin, JJ (1986) Methionine metabolism in mammals. Adaptation to methionine excess. Journal of Biological Chemistry 261, 15821587.CrossRefGoogle ScholarPubMed
Finkelstein, JD, Martin, JJ & Harris, BJ (1988) Methionine metabolism in mammals. The methionine-sparing effect of cystine. Journal of Biological Chemistry 263, 1175011754.CrossRefGoogle ScholarPubMed
Fisher, JE (1982) Amino acids in hepatic coma. Digestive Diseases Science 2, 97102.CrossRefGoogle Scholar
Flaim, KE, Liao, WS, Peavy, DE, Taylor, JM & Jefferson, LS (1982) The role of amino acids in the regulation of protein synthesis in perfused rat liver. Journal of Biological Chemistry 257, 2946.Google ScholarPubMed
Forbes, GB (1996) Body composition. In Present Knowledge in Nutrition 7th ed., pp.712 [Ziegler, EE and Filer, LJ editors]. Washington DC: ILSI Press.Google Scholar
Førstrom, JW, Zakowski, JJ & Tappel, AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17, 26392644.CrossRefGoogle ScholarPubMed
Freund, H, Atamian, S, Holroyde, J & Fisher, JE (1979) Plasma amino acids as predictors of the severity and outcome of sepsis. Annals of Surgery 190, 571576.CrossRefGoogle ScholarPubMed
Friedman, M (1992) Dietary impact of food processing. Annual Review of Nutrition 12, 119137.CrossRefGoogle ScholarPubMed
Friedrich, JW & Schrader, LE (1978) Sulfur deprivation and nitrogen metabolism in maize seedlings. Plant Physiology 61, 900903.CrossRefGoogle ScholarPubMed
Fukagawa, NK, Ajami, AM & Young, VR (1996) Plasma methionine and cysteine kinetics in response to an intravenous glutathione infusion in adult humans. American Journal of Physiology 270, E209E214.Google Scholar
Fukuda, M, Hiraoka, N, Akama, TO & Fukuda, MN (2001) Carbohydrate-modifying sulfotransferases: structure, function and pathophysiology. Journal of Biological Chemistry 276, 4774747750.CrossRefGoogle ScholarPubMed
Fuller, MF, McWilliam, R, Wang, TC & Giles, LR (1989) The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. British Journal of Nutrition 62, 255267.CrossRefGoogle ScholarPubMed
Fuller, MF, Milne, A, Harris, CI, Reid, TM & Keenan, R (1994). Amino acid losses in ileostomy fluid on a protein-free diet. American Journal of Clinical Nutrition 59, 7073CrossRefGoogle ScholarPubMed
Gallistl, S, Sudi, KM, Erwa, W, Aigner, R & Borkenstein, M (2001) Determinants of homocysteine during weight reduction in obese children and adolescents. Metabolism 50, 12201223.CrossRefGoogle ScholarPubMed
Garcia, RAG & Stipanuk, MH (1992) The splanchnic organs, liver and kidney have unique roles in the metabolism of sulfur amino acids and their metabolites in rats. Journal of Nutrition 122, 16931701.CrossRefGoogle Scholar
Gaull, GE & Tallan, HH (1974) Methionine adenosyltransferase deficiency: new enzymatic defect associated with hypermethioninemia. Science 186, 4963.CrossRefGoogle ScholarPubMed
Gibson, GR, Macfarlane, GT & Cummings, JH (1993) Sulphate reducing bacteria and hydrogen metabolism in the human large intestine. Gut 34, 437439.CrossRefGoogle ScholarPubMed
Giulidori, P, Galli-Kienle, M, Catto, E & Stramentinoli, G (1984) Transmethylation, transsulfuration, and aminopropylation reactions of S-adenosyl-L-methionine in vivo. Journal of Biological Chemistry 259, 42054211.CrossRefGoogle ScholarPubMed
Goldstein, DS, Swobda, KJ, Miles, JM, Coppack, SW, Aneman, A, Holmes, C, Lamensdorf, I & Eisenhofer, G (1999) Sources and physiological significance of plasma dopamine sulfate. Journal of Clinical Endocrinology and Metabolism 84, 25232531.CrossRefGoogle ScholarPubMed
Gray, GE, Landel, AM & Meguid, MM (1994) Taurine-supplemented total parenteral nutrition and taurine status of malnourished cancer patients. Nutrition 10, 1115.Google ScholarPubMed
Grimble, RF, Jackson, AA, Persaud, C, Wride, MJ, Delers, F & Engler, M (1992) Cysteine and glycine supplementation modulate the metabolic response to tumor necrosis factor α in rats fed a low protein diet. Journal of Nutrition 122, 20662073.CrossRefGoogle ScholarPubMed
Gubler, CJ (1991) Thiamin. In Handbook of Vitamins 2nd ed., pp.233281 [Machlin, LJ, editor]. New York: Marcel Dekker.Google Scholar
Hamadeh, MJ & Hoffer, LJ (2001) Use of sulfate production as a measure of short-term sulfur amino acid catabolism in humans. American Journal of Physiology 280, E857E866.Google ScholarPubMed
Hamadeh, MJ & Hoffer, LJ (2003) Effect of protein restriction on sulfur amino acid catabolism in insulin-dependent diabetes mellitus. American Journal of Physiology 284, E382E389.Google ScholarPubMed
Hamadeh, MJ, Schiffrin, A & Hoffer, LJ (2001) Sulfate production depicts fed-state adaptation to protein restriction in humans. American Journal of Physiology 281, E341E348.Google ScholarPubMed
Hankey, JH & Eikelboom, JM (1999) Homocysteine and vascular disease. Lancet 354, 407413.CrossRefGoogle ScholarPubMed
Hart, JW & Filner, P (1969) Regulation of sulfate uptake by amino acids in cultured tobacco cells. Plant Physiology 44, 12531259.CrossRefGoogle ScholarPubMed
Hiramatsu, T, Fukagawa, NK, Marchini, JS, Cortiella, J, Yu, JM, Chapman, TE & Young, VR (1994) Methionine and cysteine kinetics at different intakes of cystine in healthy adult men. American Journal of Clinical Nutrition 60, 525533.CrossRefGoogle ScholarPubMed
Holland, HD (1974) Aspects of the geologic history of seawater. Origins of Life 5, 8791.CrossRefGoogle ScholarPubMed
Horowitz, JH, Rypins, EB, Henderson, JM, Heymsfield, SB, Moffitt, SD, Bain, RP, Chawla, RK, Bleier, JC & Rudman, D (1981) Evidence for impairment of transsulfuration pathway in cirrhosis. Gastroenterology 81, 668675.CrossRefGoogle ScholarPubMed
Hou, C, Wykes, LJ & Hoffer, LJ (2003) Urinary sulfur excretion and the nitrogen/sulfur balance ratio reveal nonprotein sulfur amino acid retention in piglets. Journal of Nutrition 133, 766772.CrossRefGoogle ScholarPubMed
Hum, S, Koski, KG & Hoffer, LJ (1992) Varied protein intake alters glutathione metabolism in rats. Journal of Nutrition 122, 20102018.CrossRefGoogle ScholarPubMed
Hustad, S, Ueland, PM, Vollset, SE, Zhang, Y, Bjorke-Monsen, AL & Schneede, J (2000) Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clinical Chemistry 46, 10651071.CrossRefGoogle ScholarPubMed
Hutson, SM & Harper, AE (1981) Blood and tissue branched-chain amino and α-keto acid concentrations: effect of diet, starvation, and disease. American Journal of Clinical Nutrition 34, 173183.CrossRefGoogle ScholarPubMed
Huxtable, RJ (1986) Biochemistry of Sulfur New York: Plenum Publishing Corp.CrossRefGoogle Scholar
Hwa, V, Oh, Y & Rosenfeld, RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocrine Reviews 20, 761787.Google ScholarPubMed
Ingenbleek, Y (1983) Vitamin A-deficiency impairs the normal mannosylation, conformation and iodination of thyroglobulin: a new etiological approach to endemic goitre. Experientia 39, Suppl. 44, 264297.Google Scholar
Ingenbleek, Y, Barclay, D & Dirren, H (1986) Nutritional significance of alterations in serum amino acid patterns in goitrous patients. American Journal of Clinical Nutrition 43, 310319.CrossRefGoogle ScholarPubMed
Ingenbleek, Y & Bernstein, L (1999) The stressful condition as a nutritionally dependent adaptive dichotomy. Nutrition 15, 305320.CrossRefGoogle ScholarPubMed
Ingenbleek, Y, De Visscher, M (1979) Hormonal and nutritional status: critical conditions for endemic goiter epidemiology? Metabolism 28, 919.CrossRefGoogle ScholarPubMed
Ingenbleek, Y, De Visscher, M & De Nayer, P (1972) Measurement of prealbumin as index of protein-calorie malnutrition. Lancet ii, 106109.CrossRefGoogle Scholar
Ingenbleek, Y, Hardillier, E & Jung, L (2002) Subclinical protein malnutrition is a determinant of hyperhomocysteinemia. Nutrition 18, 4046.CrossRefGoogle ScholarPubMed
Ingenbleek, Y, Luypaert, B & De Nayer, P (1980) Nutritional status and endemic goitre. Lancet i, 388392.CrossRefGoogle Scholar
Ingenbleek, Y & Young, V (1994) Transthyretin (prealbumin) in health and disease. Annual Review of Nutrition 14, 496533.CrossRefGoogle ScholarPubMed
Ingenbleek, Y & Young, VR (2002) Significance of transthyretin in protein metabolism. Clinical Chemistry and Laboratory Medicine 40, 12811291.CrossRefGoogle ScholarPubMed
Irwin, MI & Hegsted, DM (1971) A conspectus of research in amino acid requirements of man. Journal of Nutrition 101, 539566.CrossRefGoogle ScholarPubMed
Ittyerah, TR (1969) Urinary excretion of sulfate in kwashiorkor. Clinica Chimica Acta 25, 365369.CrossRefGoogle ScholarPubMed
Ittyerah, TR, Pereira, SM & Dumm, ME (1965) Serum amino acids of children on high and low protein intakes. American Journal of Clinical Nutrition 17, 1114.CrossRefGoogle ScholarPubMed
Jackson, AA (1986) Blood glutathione in severe malnutrition in childhood. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 911913.CrossRefGoogle ScholarPubMed
Jackson, SH, Elliott, T, Gero, T, Brown, F & Fritz, G (1968) Urinary sulfur excretion and whole-body protein catabolism. The effects of burns, age and protein restriction. Clinica Chimica Acta 22, 443453.CrossRefGoogle ScholarPubMed
Jahoor, F, Jackson, A, Gazzard, B, Philips, G, Sharpstone, D, Frazer, ME & Heird, W (1999) Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. American Journal of Physiology 276, E205E211.Google ScholarPubMed
Jahoor, F, Wykes, LJ, Reeds, PJ, Henry, JF, del Rosario, MP & Frazer, ME (1995) Protein-deficient pigs cannot maintain reduced glutathione homeostasis when subjected to the stress of inflammation. Journal of Nutrition 125, 14621472.Google Scholar
Jetten, AM, George, MA, Nervi, C, Boone, LR & Rearick, JI (1989) Increased cholesterol sulfate and cholesterol sulfotransferase activity in relation to the multi-step process of differentiation in human epidermal keratinocytes. Journal of Investigative Dermatology 92, 203209.CrossRefGoogle Scholar
Kang, SS, Wong, PW & Norusis, M (1987) Homocysteinemia due to folate deficiency. Metabolism 36, 458462.CrossRefGoogle ScholarPubMed
Kang-Lee, TA & Harper, AE (1978) Threonine metabolism in vivo: effect of threonine intake and prior induction of threonine dehydratase in rats. Journal of Nutrition 108, 163175.CrossRefGoogle ScholarPubMed
Kelly, DP (1980) The sulphur cycle: definition, mechanisms and dynamics. In Sulphur in Biology, CIBA, Foundation Symposium no.72 pp.318 [Elliot, K and Whelan, J editors]. Amsterdam: Excerpta Medica.CrossRefGoogle Scholar
Kennedy, PM (1974) The utilization and excretion of sulphur in cattle fed tropical roughages. Australian Journal of Agricultural Research 25, 10151022.CrossRefGoogle Scholar
Kinsell, LW, Harper, HA, Barton, HC, Michaels, GD & Weiss, HA (1947) Rate of disappearance from plasma of intravenously administered methionine in patients with liver damage. Science 106, 589590.CrossRefGoogle ScholarPubMed
Kjèllen, L & Lindahl, U (1991) Proteoglycans: structures and interactions. Annual Review of Biochemistry 60, 443475.CrossRefGoogle ScholarPubMed
Krijgsheld, KR, Frankena, H, Scholtens, E, Zweens, J & Mulder, GJ (1979) Absorption, serum levels and urinary excretion of inorganic sulfate after oral administration of sodium sulfate in the conscious rat. Biochimica et Biophysica Acta 586, 494500.Google ScholarPubMed
Kuchel, O (1994) Clinical implications of genetic and acquired defects in catecholamine synthesis and metabolism. Clinical and Investigative Medicine 17, 354373.Google ScholarPubMed
Kutzbach, C & Stokstad, ELR (1967) Feedback inhibition of methylene-tetrahydrofolate reductase in rat liver by S-adenosylmethionine. Biochimica et Biophysica Acta 139, 217220.CrossRefGoogle ScholarPubMed
Lakshmanan, FL, Perera, WDA, Scrimshaw, NS & Young, VR (1976) Plasma and urinary amino acids and selected sulfur metabolites in young men fed a diet devoid of methionine and cystine. American Journal of Clinical Nutrition 29, 13671371.CrossRefGoogle ScholarPubMed
Larsson, J, Liljedahl, SO, Mårtensson, J, Nordstrom, H, Schildt, B & Sörbo, B (1982) Urinary excretion of sulfur amino acids and sulfur metabolites in burned patients receiving parenteral nutrition. Journal of Trauma 22, 656663.CrossRefGoogle ScholarPubMed
Lauterburg, BH, Adams, JD & Mitchell, JR (1984) Hepatic glutathione homeostasis in the rat: efflux accounts for glutathione turnover. Hepatology 4, 586590.CrossRefGoogle ScholarPubMed
Lauterburg, BH & Smith, CV (1986) Stimulation of hepatic efflux and turnover of glutathione by methionine in the rat. European Journal of Clinical Investigation 16, 494499.CrossRefGoogle ScholarPubMed
Leaf, G & Neuberger, A (1947) The effect of diet on the glutathione content of the liver. Biochemical Journal 41, 280287.CrossRefGoogle ScholarPubMed
Lussier-Cacan, S, Xhignesse, M, Piolot, A, Selhub, J, Davignon, J & Genest, J Jr (1996) Plasma total homocysteine in healthy subjects: sex-specific relation with biological traits. American Journal of Clinical Nutrition 64, 587593.CrossRefGoogle ScholarPubMed
Lyle, S, Stanczak, J, Ng, K & Schwartz, NB (1994) Rat chondrosarcoma ATP-sulfurylase and adenosine 5'-phosphosulfate kinase reside on a single bifunctional protein. Biochemistry (Mosc) 33, 59205925.CrossRefGoogle ScholarPubMed
McCaddon, A, Davies, G, Hudson, P, Tandy, S & Cattell, H (1998) Total serum homocysteine in senile dementia of Alzheimer type. International Journal of Geriatric Psychiatry 13, 235239.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
McCully, KS (1996) Homocysteine and vascular disease. Nature Medicine 2, 386389.CrossRefGoogle ScholarPubMed
Malmezat, T, Breuille, D, Capitan, P, Mirand, PP & Obled, C (2000 a) Glutathione turnover is increased during the acute phase of sepsis in rats. Journal of Nutrition 130, 12391246.CrossRefGoogle ScholarPubMed
Malmezat, T, Breuillé, D, Pouyet, C, Buffière, C, Denis, P, Patureau Mirand, P & Obled, C (2000 b) Methionine transsulfuration is increased during sepsis in rats. American Journal of Physiology 279, E1391E1397.Google ScholarPubMed
Mårtensson, J, Larsson, J & Nordstrom, H (1987) Amino acid metabolism during the anabolic phase of severely burned patients: with special reference to sulphur amino acids. European Journal of Clinical Investigation 17, 130135.CrossRefGoogle ScholarPubMed
Meister, A & Anderson, ME (1983) Glutathione. Annual Review of Biochemistry 52, 711760.CrossRefGoogle ScholarPubMed
Meredith, CN, Wen, ZM, Bier, DM, Matthews, DE & Young, VR (1986) Lysine kinetics at graded lysine intakes in young men. American Journal of Clinical Nutrition 43, 787794CrossRefGoogle ScholarPubMed
Mitchell, SC (1996) Biological Interactions of Sulfur Compounds. London: Taylor & Francis.CrossRefGoogle Scholar
Mohr, H & Schopfer, P (1994) Plant Physiology. Berlin: Springer Verlag.Google Scholar
Montanari, A, Simoni, I, Vallisa, D, Trifiro, A, Colla, R, Abbiati, R, Borghi, L & Novarini, A (1988) Free amino acids in plasma and skeletal muscle of patients with liver cirrhosis. Hepatology 8, 10341039.CrossRefGoogle ScholarPubMed
Mortensen, RA, Haley, MI & Elder, HA (1956) The turnover of erythrocyte glutathione in the rat liver. Journal of Biological Chemistry 218, 268273.CrossRefGoogle Scholar
Motulsky, AG (1996) Nutritional ecogenetics: homocysteine-related arteriosclerotic vascular disease, neural tube defects, and folic acid. American Journal of Human Genetics 58, 1720.Google ScholarPubMed
Moyano, D, Vilaseca, MA, Artuch, R, Valls, C & Lambruschini, N (1998) Plasma total-homocysteine in anorexia nervosa. European Journal of Clinical Nutrition 52, 172175.CrossRefGoogle ScholarPubMed
Mudd, SH & Poole, JR (1975) Labile methyl balances for normal humans on various dietary regimens. Metabolism 24, 721735.CrossRefGoogle ScholarPubMed
Mueller, JH (1923) A new sulphur-containing amino acid isolated from hydrolytic products of protein. Journal of Biological Chemistry 56, 157169.CrossRefGoogle Scholar
Nagata, K & Yamazoe, Y (2000) Pharmacogenetics of sulfotransferase. Annual Review of Pharmacology and Toxicology 40, 159176.CrossRefGoogle ScholarPubMed
Nedrebø, BG, Ericsson, UB, Nygård, O, Refsum, H, Ueland, PM, Aakvaag, A, Aanderud, S & Lien, EA (1998) Plasma total homocysteine levels in hyperthyroid and hypothyroid patients. Metabolism 47, 8993.CrossRefGoogle ScholarPubMed
Niehrs, C, Beisswanger, R & Huttner, WB (1994) Protein tyrosine sulfation, 1993 – an update. Chemico-Biological Interactions 92, 257271.CrossRefGoogle ScholarPubMed
Nlend, MC, Cauvi, D, Venot, N & Chabaud, O (1999 a) Sulfated tyrosines of thyroglobulin are involved in thyroid hormone synthesis Biochemical and Biophysical Research Communications 262, 193197.CrossRefGoogle ScholarPubMed
Nlend, MC, Cauvi, D, Venot, N, Desruisseau, S & Chabaud, O (1999 b) Thyrotropin regulates tyrosine sulfation of thyroglobulin. European Journal of Endocrinology 141, 6169.CrossRefGoogle ScholarPubMed
Onasch, A, Tanzeem, A, Isgro, F, Boning, D & Strobel, G (2000) Effect of intravenous dopamine infusion on plasma concentrations of dopamine and dopamine sulfate in men, during and up to 18 h after infusion. European Journal of Pharmacology 55, 755759.Google ScholarPubMed
Owens, FN & Bergen, WG (1983) Nitrogen metabolism in ruminant animals: historical perspective, current understanding and future implications. Journal of Animal Sciences 57, Suppl. 2, 498518.Google ScholarPubMed
Pabo, CO, Peisach, E & Grant, RA (2001) Design and selection of novel Cys 2 His 2 zinc finger proteins. Annual Review of Biochemistry 70, 313340.CrossRefGoogle Scholar
Pancharuniti, N, Lewis, CA, Sauberlich, HE, Perkins, LL, Go, RCP, Alvarez, JO, Macaluso, A, Acton, RT, Copeland, RB, Cousins, AL, Gore, TB, Cornwell, PE & Roseman, JM (1994) Plasma homocyst(e)ine, folate, and vitamin B-12 concentrations and risk for early-onset coronary artery disease. American Journal of Clinical Nutrition 59, 940948.CrossRefGoogle ScholarPubMed
Parenti, G, Meroni, G & Ballabio, A (1997) The sulfatase gene family. Current Opinion in Genetics and Development 7, 386391.CrossRefGoogle ScholarPubMed
Parsons, TF & Pierce, JG (1980) Oligosaccharide moieties of glycoprotein hormones: bovine lutropin resists enzymatic deglycosylation because of terminal O-sulfated N-acetylhexosamines. Proceedings of the National Academy of Sciences USA 77, 70897093.CrossRefGoogle ScholarPubMed
Pérez, C, Scrimshaw, NS & Muñoz, JA (1960) Endemic Goitre, WHO, Monograph Series n . 44. Geneva: WHO.Google Scholar
Peters, JP & Van Slijke, DD (1931) Quantitative Clinical Chemistry, vol.I, Interpretations Baltimore: The Williams & Wilkins Co.Google Scholar
Plesofsky-Vig, N & Brambi, R (1988) Pantothenic acid and coenzyme A in cellular modification of proteins. Annual Review of Nutrition 8, 461482.CrossRefGoogle ScholarPubMed
Polge, A, Bancel, E, Bellet, H, Strubel, D, Poirey, S, Peray, P, Carlet, C & Magnan de Bornier, B (1997) Plasma amino acid concentrations in elderly patients with protein energy malnutrition. Age and Ageing 26, 457462.CrossRefGoogle ScholarPubMed
Radominska, A, Comer, KA, Zimniak, P, Falany, J, Iscan, M & Falany, CN (1990) Human liver steroid sulphotransferase sulphates bile acids. Biochemical Journal 272, 597604.CrossRefGoogle ScholarPubMed
Raguso, CA, Ajami, AM, Gleason, R, Young, VR (1997) Effect of cystine intake on methionine kinetics and oxidation determined with oral tracers of methionine and cysteine in healthy adults. American Journal of Clinical Nutrition 66, 283292.CrossRefGoogle ScholarPubMed
Raguso, CA, Pereira, P & Young, VR (1999) A tracer investigation of obligatory oxidative amino acid losses in healthy, young adults. American Journal of Clinical Nutrition 70, 474483.CrossRefGoogle ScholarPubMed
Rao, AM, Drake, MR & Stipanuk, MH (1990) Role of the transsulfuration pathway and of γ-cystathioninase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes. Journal of Nutrition 120, 837845.CrossRefGoogle ScholarPubMed
Refsum, H, Smith, AD, Ueland, PM, Nexo, E, Clarke, R, McPartlin, J, Johnston, C, Engbaek, F, Schneede, J, McPartlin, C & Scott, JM (2004) Facts and recommendations about total homocysteine determinations: an expert opinion. Clinical Chemistry 50, 332.CrossRefGoogle ScholarPubMed
Reinhardt, D, Sigusch, HH & Vogt, SF (1998) Absence of association between a common mutation in the methylenetetrahydrofolate reductase gene and the risk of coronary artery disease. European Journal of Clinical Investigation 28, 2023.CrossRefGoogle ScholarPubMed
Rérat, A, Simoes-Nuñez, C, Mendy, T, Vaissade, P & Vaugelade, P (1992) Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthesized pig. British Journal of Nutrition 68, 111138.CrossRefGoogle ScholarPubMed
Reuveny, Z & Filner, P (1977) Regulation of adenosine triphosphate sulfurylase in cultured tobacco cells. Effects of sulfur and nitrogen sources on the formation and decay of the enzyme. Journal of Biological Chemistry 252, 18581864.CrossRefGoogle ScholarPubMed
Reynolds, MS, Steel, DL, Jones, EM & Baumann, CA (1958) Nitrogen balances of women maintained on various levels of methionine and cystine. Journal of Nutrition 64, 99111.CrossRefGoogle ScholarPubMed
Rose, WC (1957) The amino acid requirements of adult man. Nutrition Abstracts and Reviews 27, 631647.Google ScholarPubMed
Rosenberg, IH, Selhub, J, Jacques, PF, Bowman, BA, Gunter, EW, Johnson, CL & Murphy, RS (1997) Blood homocysteine levels in the national health and nutrition examination survey (NHANES III) in the United States: preliminary findings by age and sex. In International Conference on Homocysteine Metabolism: from Basic Science to Clinical Medicine pp.183-187 [Graham, I, Refsum, H, Rosenberg, IH and Ueland, PM editors]. Norwell MA: Kluwer Academic.Google Scholar
Rudland, PS & Clark, BFC (1972) Polypeptide chain initiation and the role of a methionine tRNA. In The Mechanism of Protein Synthesis and its Regulation pp.55131 [Bosch, L editor]. Amsterdam: North-Holland Publishing Co.Google Scholar
Sabry, ZI, Shadarevian, SB, Cowan, JW & Campbell, JA (1965) Relationship of dietary intake of sulphur amino-acids to urinary excretion of inorganic sulphate in man. Nature 206, 931933.CrossRefGoogle ScholarPubMed
Sherman, HC & Hawk, PB (1900) On the elimination of nitrogen, sulphates, and phosphates after the ingestion of proteid food. American Journal of Physiology 4, 2549.CrossRefGoogle Scholar
Skiba, WE, Taylor, MP, Wells, MS, Mangum, JH, Awad, WM Jr (1982) Human hepatic methionine biosynthesis. Purification and characterization of betaine:homocysteine S-methyltransferase. Journal of Biological Chemistry 257, 1494414948.CrossRefGoogle ScholarPubMed
Smith, IK (1975) Sulfate transport in cultured tobacco cells. Plant Physiology 55, 303307.CrossRefGoogle ScholarPubMed
Snydermann, SE, Holt, LE, Norton, PM Jr, Roitman, E & Phansalkar, SV (1968) The plasma aminogram. I. Influence of the level of protein intake and a comparison of whole protein and amino acid diets. Pediatric Research 2, 131144.CrossRefGoogle Scholar
Stabler, SP, Allen, RH, Savage, DG & Lindenbaum, K (1990) Clinical spectrum and diagnosis of cobalamin deficiency. Blood 76, 871881.CrossRefGoogle ScholarPubMed
Stabler, SP, Marcell, PD, Podell, ER & Allen, RH (1987) Quantitation of total homocysteine, total cysteine and methionine in normal serum and urine using capillary gas chromatography-mass spectrometry. Analytical Biochemistry 162, 185196.CrossRefGoogle ScholarPubMed
Stephen, JML (1968) Adaptive enzyme changes in liver and muscle of rats during protein depletion and refeeding. British Journal of Nutrition 22, 153163.CrossRefGoogle ScholarPubMed
Stolzenberg-Solomon, NZ, Miller, ER, Maguire, MG, Selhub, J & Appel, LJ (1999) Association of dietary protein intake and coffee consumption with serum homocysteine concentrations in an older population. American Journal of Clinical Nutrition 69, 467475.CrossRefGoogle Scholar
Storch, KJ, Wagner, DA, Burke, JF & Young, VR (1990) [1-13 C; methyl-2H3] methionine kinetics in humans: methionine conservation and cystine sparing. American Journal of Physiology 258, E790E798.Google Scholar
Strobel, G, Friedmann, B, Jost, J & Bärtsch, P (1994) Plasma and platelet catecholamine and catecholamine sulfate response to various exercise tests. American Journal of Physiology 267, E537E543.Google ScholarPubMed
Strott, CA (2002) Sulfonation and molecular action. Endocrine Reviews 23, 703732.CrossRefGoogle ScholarPubMed
Sult, WV & Kulp, JL (1959) Isotopic geochemistry of sulphur. Geochimica et Cosmochimica Acta 16, 201235.Google Scholar
Tateishi, N, Higashi, T, Naruse, A, Nakashima, K, Shiozaki, H & Sakamoto, Y (1977) Rat liver glutathione: possible role as a reservoir of cysteine. Journal of Nutrition 107, 5160.CrossRefGoogle ScholarPubMed
Tolbert, BM (1985) Metabolism and function of ascorbic acid and its metabolites. International Journal of Vitamin and Nutrition Research 27, Suppl., 121138.Google ScholarPubMed
Ubbink, JB (1997) Vitamin status and hyperhomocysteinemia in a healthy population. In International Conference on Homocysteine Metabolism: from Basic Science to Clinical Medicine pp.9398 [Graham, I, Refsum, H, Rosenberg, IH and Ueland, PM editors]. Norwell MA: Kluwer Academic.CrossRefGoogle Scholar
Ubbink, JB, van der Merwe, A, Delport, R, Allen, RH, Stabler, SP, Riezler, R & Vermaak, WJH (1996) The effect of a subnormal vitamin B-6 status on homocysteine metabolism. Journal of Clinical Investigation 98, 177184.CrossRefGoogle ScholarPubMed
Uhlig, S & Wendel, A (1992) The physiological consequences of glutathione variations. Life Sciences 51, 10831094.CrossRefGoogle ScholarPubMed
Vente, JP, von Meyenfeldt, MF, van Eijk, HMH, van Berlo, CLH, Gouma, DJ, Van der Linden, CJ & Soeters, PB (1989) Plasma-amino acid profiles in sepsis and stress. Annals of Surgery 209, 5762.CrossRefGoogle ScholarPubMed
Viña, J, Gimenez, A, Puertes, IR, Gasco, E & Vina, JR (1992) Impairment of cysteine synthesis from methionine in rats exposed to surgical stress. British Journal of Nutrition 68, 421429.CrossRefGoogle ScholarPubMed
Visser, TJ (1996) Role of sulfate in thyroid hormone sulfation. European Journal of Endocrinology 134, 1214.CrossRefGoogle ScholarPubMed
Vos, JP, Lopes-Cardozo, M & Gadella, BM (1994) Metabolic and functional aspects of sulfogalactolipids. Biochimica et Biophysica Acta 1211, 125149.CrossRefGoogle ScholarPubMed
Wächtershäuser, G (2000) Life as we don't know it. Science 289, 13071308.CrossRefGoogle ScholarPubMed
Waterlow, JC (1975) Amount and rate of disappearance of liver fat in malnourished infants in Jamaica. American Journal of Clinical Nutrition 28, 13301336.CrossRefGoogle ScholarPubMed
Waterlow, JC (1992) Protein-Energy Malnutrition London: Edwards ArnoldGoogle Scholar
Weir, DG & Scott, JM (1998) Homocysteine as a risk factor for cardiovascular and related disease: nutritional implications. Nutrition Research Reviews 11, 311338.CrossRefGoogle ScholarPubMed
Werder, EA, Curtius, HC, Tancredi, F, Anders, PW & Prader, A (1966) Homocystinurie. Helvetica Paediatrica Acta 21, 118.Google Scholar
White, AC, Thannickal, VJ & Fanburg, BL (1994) Glutathione deficiency in human disease. Journal of Nutritional Biochemistry 5, 218226.CrossRefGoogle Scholar
Williams, JA (1982) Cholecystokinin: a hormone and neurotransmitter. Biomedical Research 3, 107121.CrossRefGoogle Scholar
Winnewisser, G & Herbst, E (1987) Organic molecules in space. Topics in Current Chemistry 139, 119172.CrossRefGoogle Scholar
Wolfe, RR, Jahoor, F & Hartl, WH (1989) Protein and amino acid metabolism after injury. Diabetes and Metabolism Reviews 5, 149164.CrossRefGoogle ScholarPubMed
Womack, M, Kemmerer, KS & Rose, WC (1937) The relation of cysteine and methionine to growth. Journal of Biological Chemistry 121, 403410.CrossRefGoogle Scholar
Womack, M & Rose, WC (1941) Partial replacement of dietary methionine by cystine for purposes of growth. Journal of Biological Chemistry 141, 375379.CrossRefGoogle Scholar
Wright, JB, Martin, PG, Skellenger, ML & Moschette, DS (1960) Metabolic patterns in preadolescent children. III. Sulfur balance on three levels of nitrogen intake. Journal of Nutrition 72, 314316.CrossRefGoogle ScholarPubMed
Yen, SSC (2001) Dehydroepiandrosterone sulfate and longevity: new clues for an old friend. Proceedings of the National Academy of Sciences USA 98, 81678169.CrossRefGoogle ScholarPubMed
Yoshida, A & Moritoki, K (1974) Nitrogen sparing action of methionine and threonine in rats receiving a protein free diet. Nutrition Reports International 9, 159168.Google Scholar
Young, VR & Munro, HN (1973) Plasma and tissue tryptophan levels in relation to tryptophan requirements of weanling and adult rats. Journal of Nutrition 103, 17591763.CrossRefGoogle ScholarPubMed
Young, VR & Munro, HN (1978) Nτ-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Federation Proceedings 37, 22912300.Google ScholarPubMed
Young, VR & Pellett, PL (1994) Plant proteins in relation to human protein and amino acid nutrition. American Journal of Clinical Nutrition 59, 1203S1212S.CrossRefGoogle ScholarPubMed
Young, VR, Yu, YM, Fukagawa, NK & Raguso, CA (1997) Methionine kinetics and balance. In International Conference on Homocysteine Metabolism: from Basic Science to Clinical Medicine pp.1122 [Graham, I, Refsum, H, Rosenberg, IH and Ueland, PM editors]. Norwell MA: Kluwer Academic.CrossRefGoogle Scholar
Yu, Y, Burke, JF & Young, VR (1993) A kinetic study of L-2H3-methyl-1-13 C-methionine in patients with severe burn injury. Journal of Trauma 35, 17.CrossRefGoogle Scholar
Yu, YM, Ryan, CM, Fei, ZW, Lu, XM, Castillo, L, Schultz, JT, Tompkins, RG & Young, VR (2002) Plasma L-5-oxoproline kinetics and whole body glutathione synthesis rates in severely burned adult patients. American Journal of Physiology 282, E247E258.Google Scholar
Zempleni, J & Mock, DM (1999) Biotin biochemistry and human requirements. Journal of Nutritional Biochemistry 10, 128138.CrossRefGoogle ScholarPubMed