Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T21:12:26.333Z Has data issue: false hasContentIssue false

Dietary modulation of the human colonic microbiota: updating the concept of prebiotics

Published online by Cambridge University Press:  14 December 2007

Glenn R. Gibson
Affiliation:
Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Reading, UK
Hollie M. Probert
Affiliation:
Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Reading, UK
Jan Van Loo*
Affiliation:
Orafti, Aandorenstraat 1, B3300 Tienen, Belgium
Robert A. Rastall
Affiliation:
Food Microbial Sciences Unit, School of Food Biosciences, The University of Reading, Reading, UK
Marcel B. Roberfroid
Affiliation:
Université Catholique de Louvain, Brussels, Belgium
*
*Corresponding author: Dr Jan Van Loo, fax +32 16 801359, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Prebiotics are non-digestible (by the host) food ingredients that have a beneficial effect through their selective metabolism in the intestinal tract. Key to this is the specificity of microbial changes. The present paper reviews the concept in terms of three criteria: (a) resistance to gastric acidity, hydrolysis by mammalian enzymes and gastrointestinal absorption; (b) fermentation by intestinal microflora; (c) selective stimulation of the growth and/or activity of intestinal bacteria associated with health and wellbeing. The conclusion is that prebiotics that currently fulfil these three criteria are fructo-oligosaccharides, galacto-oligosaccharides and lactulose, although promise does exist with several other dietary carbohydrates. Given the range of food vehicles that may be fortified by prebiotics, their ability to confer positive microflora changes and the health aspects that may accrue, it is important that robust technologies to assay functionality are used. This would include a molecular-based approach to determine flora changes. The future use of prebiotics may allow species-level changes in the microbiota, an extrapolation into genera other than the bifidobacteria and lactobacilli, and allow preferential use in disease-prone areas of the body.

Type
research-article
Copyright
Copyright © The Authors 2004

References

Agheli, N, Kabir, M, Berni-Canani, S, Petitjean, E, Boussairi, A, Luo, J, Bornet, F, Slama, G & Rizkalla, SW (1998) Plasma lipids and fatty acid synthase activity are regulated by short-chain fructo-oligosaccharides in sucrose-fed insulin-resistant rats. Journal of Nutrition 128, 12831288.CrossRefGoogle ScholarPubMed
Antalis, TM (1995) Butyrate regulates gene expression of the plasminogen activating system in colon cancer cells. International Journal of Cancer 62, 619626.CrossRefGoogle ScholarPubMed
Asahara, T, Nomoto, K, Shimizu, K, Watanuki, M & Tanaka, R (2001) Increased resistance of mice to Salmonella enteritica serovar Typhymurium infection by synbiotic administration of bifidobacteria and transgalactosylated-oligosaccharides. Journal of Applied Microbiology 91, 985996.CrossRefGoogle Scholar
Bach Knudsen, KE & Hessov, I (1995) Recovery of inulin from Jerusalem artichoke (Helianthus tuberosus L.) in the small intestine of man. British Journal of Nutrition 74, 101113.CrossRefGoogle ScholarPubMed
Ballongue, J, Schumann, C & Quignon, P (1997) Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scandinavian Journal of Gastroenterology 222, Suppl., 4144.CrossRefGoogle ScholarPubMed
Bamba, T, Kanauchi, O, Andoh, A & Fujiyama, Y (2002) A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis. Journal of Gastroenterology and Hepatology 17, 818824.CrossRefGoogle ScholarPubMed
Beynen, AC, Baas, JC, Hoekemeijer, PE, Kappert, HJ, Bakker, MH, Koopman, JP & Lemmens, AG (2002) Fecal bacterial profile, nitrogen excretion and mineral absorption in healthy dogs fed supplemental oligofructose. Journal of Animal Physiology and Nutrition (Berlin) 86, 298305.CrossRefGoogle ScholarPubMed
Boehm, G, Lidestri, M, Casetta, P, Jelinek, J, Negretti, F, Stahl, B & Marini, A (2002) Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of fecal bifidobacteria in preterm infants. Archives of Disease in Childhood 86, F178F181.CrossRefGoogle ScholarPubMed
Bolognani, F, Rumney, CJ, Pool-Zobel, BL & Rowland, IR (2001) Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. European Journal of Nutrition 40, 293300.CrossRefGoogle ScholarPubMed
Bouhnik, Y (1994) Effects of prolonged ingestion of fructooligosaccharides (FOS) on colonic bifidobacteria, fecal enzymes and bile-acids in humans. Gastroenterology 106, A598.Google Scholar
Bouhnik, Y, Flourié, B, D'Agay-Abensour, L, Pochart, P, Gramet, G, Duran, M & Rambaud, J-C (1997) Administration of transgalacto-oligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. Journal of Nutrition 127, 444448.CrossRefGoogle ScholarPubMed
Bouhnik, Y, Flourié, B, Riottot, M, Bisetti, N, Gailing, M, Guibert, A, Bornet, F & Rambaud, JC (1996) Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutrition and Cancer 26, 2129.CrossRefGoogle ScholarPubMed
Bouhnik, Y, Vahedi, K, Achour, L, Attar, A, Salfati, J, Pochart, P, Marteau, P, Flourié, B, Bornet, F & Rambaud, J-C (1999) Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans. Journal of Nutrition 129, 113116.CrossRefGoogle ScholarPubMed
Brady, L, Gallaher, DD & Busta, FF (2000) The role of probiotic cultures in the prevention of colon cancer. Journal of Nutrition 130, 410S414S.CrossRefGoogle ScholarPubMed
Brighenti, F, Casiraghi, MC, Canzi, E & Ferrari, A (1999) Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers. European Journal of Clinical Nutrition 53, 726733.CrossRefGoogle ScholarPubMed
Brommage, R, Binacua, C, Antille, S & Carrie, AL (1993) Intestinal calcium absorption in rats is stimulated by dietary lactulose and other resistant sugars. Journal of Nutrition 123, 21862194.Google ScholarPubMed
Buddington, KK, Danohoo, JB & Buddington, RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumour inducers. Journal of Nutrition 132, 472477.CrossRefGoogle ScholarPubMed
Buddington, RK, Buddington, KK & Sunvold, GD (1999) Influence of fermentable fiber on small intestinal dimensions and transport of glucose and proline in dogs. American Journal of Veterinary Research 60, 345358.CrossRefGoogle ScholarPubMed
Buddington, RK, Williams, CH, Chen, SC & Witherly, SA (1996) Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. American Journal of Clinical Nutrition 63, 709716.CrossRefGoogle ScholarPubMed
Burns, AJ & Rowland, I (2000) Anti-carcinogenicity of probiotics and prebiotics. Current Issues in Intestinal Microbiology 1, 1324.Google ScholarPubMed
Butel, MJ, Waligora-Dupriet, AJ & Szylit, O (2002) Oligofructose and experimental model of neonatal necrotising enterocolitis. British Journal of Nutrition 87, S213S219.CrossRefGoogle ScholarPubMed
Campbell, JH, Fahey, GC Jr & Wolf, BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH, and microflora in rats. Journal of Nutrition 127, 130136.CrossRefGoogle ScholarPubMed
Capurso, L (2001) Probiotics and prebiotics and food intolerance. Allergy 56, 125126.CrossRefGoogle ScholarPubMed
Cashman, K (2002) Prebiotics and calcium bioavailability. In Probiotics and Prebiotics, pp. 149174Tannock, G editor”. Wymondham UK: Caister Academic Press.Google Scholar
Catala, I, Butel, MJ, Bensaada, M, Popot, F, Tessedre, AC, Rimbault, A & Syzlit, O (1999) Oligofructose contributes to the protective role of bifidobacteria in experimental necrotizing enterocolitis in quails. Journal of Medical Microbiology 48, 8994.CrossRefGoogle Scholar
Chen, HC, Chang, CC, Mau, WJ & Yen, L S (2002) Evaluation of N -acetylchitooligosaccharides as the main carbon sources for the growth of intestinal bacteria. FEMS, Microbiology Letters 209, 5356.CrossRefGoogle Scholar
Christl, SU, Murgatroyd, PR, Gibson, GR & Cummings, JH (1992) Production, metabolism and excretion of hydrogen in the large intestine. Gastroenterology 102, 12691277.CrossRefGoogle ScholarPubMed
Chung, CH & Day, DF (2002) Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): a potential prebiotic. Journal of Industrial Microbiology and Biotechnology 29, 196199.CrossRefGoogle ScholarPubMed
Coppa, GV, Bruni, S, Zampini, L, Galeazzi, T & Gabrielli, O (2002) Prebiotics in infant formulas: biochemical characterisation by thin layer chromatography and high performance anion exchange chromatography. Digestive and Liver Disease 34, S124S128.CrossRefGoogle ScholarPubMed
Coussement, P (1999) Inulin and oligofructose as dietary fiber: analytical, nutritional and legal aspects. Complex Carbohydrates in Foods 93, 203212.Google Scholar
Crittenden, RG (1996) Production, properties and applications of food-grade oligosaccharides. Trends in Food Science and Technology 7, 353361.CrossRefGoogle Scholar
Crittenden, RG & Playne, MJ (2002) Purification of food-grade oligosaccharides using immobilised cells of Zymomonas mobilis. Applied Microbiology and Biotechnology 58, 297302.Google ScholarPubMed
Cummings, JH, Christie, S & Cole, TJ (2001) A study of fructooligosaccharides in the prevention of travellers' diarrhoea. Alimentary Pharmacology and Therapeutics 15, 11391145.CrossRefGoogle Scholar
Cummings, JH & Englyst, HN (1991) Measurement of starch fermentation in the human large intestine. Canadian Journal of Physiology and Pharmacology 69, 121129.CrossRefGoogle ScholarPubMed
Dahlqvist, A & Nilsson, U (1984) Cereal fructosans: part 1. Isolation and characterization of fructosans from wheat flour. Food Chemistry 14, 103112.CrossRefGoogle Scholar
D‘Argenio, G (1996) Butyrate enemas in experimental colitis and protection against large bowel cancer in a rat model. Gastroenterology 110, 17271734.CrossRefGoogle ScholarPubMed
Daubioul, CA, Taper, HS, Wispelaere, LD & Delzenne, NM (2000) Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. Journal of Nutrition 130, 13141319.CrossRefGoogle Scholar
Delzenne, N, Aertssens, J, Verplaetse, H, Roccaro, M & Roberfroid, M (1995) Effect of fermentable fructo-oligosaccharides on mineral, nitrogen and energy digestive balance in the rat. Life Sciences 57, 15791587.CrossRefGoogle ScholarPubMed
Diplock, AT, Aggett, PJ, Ashwell, M, Bornet, F, Fern, EB & Roberfroid, MB (1999) Scientific concepts of functional foods in Europe: consensus document. British Journal of Nutrition 81, S1S27.Google Scholar
Djouzi, Z, Andrieux, C, Pelenc, V, Somarriba, S, Popot, F, Paul, F, Monsan, P & Szylit, O (1995) Degradation and fermentation of alpha-gluco-oligosaccharides by bacterial strains from human colon: in vitro and in vivo studies in gnotobiotic rats. Journal of Applied Bacteriology 79, 117127.CrossRefGoogle Scholar
Dubey, UK & Mistry, VV (1996) Effect of bifidogenic factors on growth characteristics of bifidobacteria in infant formulas. Journal of Dairy Science 79, 11561163.CrossRefGoogle ScholarPubMed
Ellegard, L, Andersson, H & Bosaeus, I (1997) Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. European Journal of Clinical Nutrition 51, 15.CrossRefGoogle ScholarPubMed
Femia, AP, Luceri, C, Dolara, P, Giannini, A, Biggeri, A, Salvadori, M, Clune, Y, Collins, JK, Paglierani, M & Caderni, G (2002) Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the prebiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis. Carcinogenesis 23, 19531960.CrossRefGoogle ScholarPubMed
Finegold, SM, Attebery, HR & Sutter, VL (1974) Effect of diet on human fecal bacteria: comparison of Japanese and American diets. American Journal of Clinical Nutrition 27, 14561469.CrossRefGoogle ScholarPubMed
Fioraliso, M, Kok, N, Desager, JP, Goethals, F, Deboyser, D, Roberfroid, M & Delzenne, N (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30, 163167.CrossRefGoogle Scholar
Flickinger, EA, Van Loo, J & Fahey, GC Jr (2003) Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Critical Reviews in Food Science and Nutrition 43, 1960.CrossRefGoogle Scholar
Flickinger, EA, Wolf, BW, Garleb, KA, Chow, JL, Leyer, GJ, Johns, PA & Fahey, GC (2000) Glucose-based oligosaccharides exhibit different in vitro fermentation patterns and affect in vivo apparent nutrient digestibility and microbial populations in dogs. Journal of Nutrition 130, 12671273.CrossRefGoogle ScholarPubMed
Fooks, LJ & Gibson, GR (2002) Probiotics as modulators of the gut flora. British Journal of Nutrition 88, S39S49.CrossRefGoogle ScholarPubMed
Franck, A (2002) Technological functionality of inulin and oligofructose. British Journal of Nutrition 87, S287S291.CrossRefGoogle ScholarPubMed
Franks, AH, Harmsen, HJM, Raangs, GC, Jansen, GJ, Schut, F & Welling, GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Applied Environmental Microbiology 64, 33363345.Google Scholar
Fuller, R (1997) Modification of the intestinal microflora using probiotics and prebiotics. Scandinavian Journal of Gastroenterology 32, 2831.CrossRefGoogle Scholar
Gallaher, DG & Khil, J (1999) The effect of synbiotics on colon carcinogenesis in rats. Journal of Nutrition 129, 1483S1487S.CrossRefGoogle ScholarPubMed
Gibson, GR (2000) Enhancing the functionality of prebiotics and probiotics. In Food, Nutraceuticals and Nutrition Newsletter no.24, 1 February [Lachance, PA and Fisher, MC, editors]. New Brunswick, NJ: Rutgers–The State University, Department of Food Science.Google Scholar
Gibson, GR & Angus, F (2000) Leatherhead Ingredients Handbook: Prebiotics and Probiotics. Leatherhead UK: Leatherhead Food Research Association.Google Scholar
Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Gibson, GR, Rastall, RA & Roberfroid, MB (1999 a) Prebiotics. In Colonic Microbiota, Nutrition and Health, pp.101124 [Gibson, GR and Roberfroid, MB, editors]. Dordrecht The Netherlands: Kluwer Academic Publishers.Google Scholar
Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the colonic microbiota: introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.CrossRefGoogle ScholarPubMed
Gibson, GR & Wang, X (1994 a) Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiology Letters 118, 121127.CrossRefGoogle ScholarPubMed
Gibson, GR & Wang, X (1994 b) Bifidogenic properties of different types of fructo-oligosaccharides. Food Microbiology 11, 491498.CrossRefGoogle Scholar
Gmeiner, M, Kneifel, W, Kulbe, KD, Wouters, R, De Boever, P, Nollet, L & Verstraete, W (2000) Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74–2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor). Applied Microbiology and Biotechnology 53, 219223.CrossRefGoogle Scholar
Griffin, IJ, Davila, PM & Abrams, SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intake. British Journal of Nutrition 87, S187S191.CrossRefGoogle Scholar
Guigoz, Y, Rochat, F, Perruisseau-Carrier, G, Rochat, I & Schriffin, EJ (2002) Effects of oligosaccharide on the fecal flora and non-specific immune system in elderly people. Nutrition Reviews 22, 1325.Google Scholar
Hamburger, RN (1997) The roles of probiotics and prebiotics in infants. In International Congress Series – Neonatal Hermatology and Immunology III, pp. 159172 [Bellanti, JA, Bracci, R, Prindull, G and Xanthou, M, editors]. Elsevier Publishers.Google Scholar
Hara, H, Li, S, Sasaki, M, Maruyama, T, Terada, A, Ogata, Y, Fujita, K, Ishigami, H, Hara, K, Fujimori, I & Mitsuoka, T (1994) Effective dose of lactosucrose on fecal flora and fecal metabolites of humans. Bifidobacteria Microflora 13, 5163.CrossRefGoogle Scholar
Harmsen, HJ, Raangs, GC, Franks, A, Wildeboer-Veloo, AC & Welling, GW (2002) The effect of the prebiotic inulin and the probiotic. Bifidobacterium longum on the fecal microflora of healthy volunteers measured by FISH and DGGE. Microbial Ecology Health and Disease 14, 219.CrossRefGoogle Scholar
Harmsen, HJM, Elfferich, P, Schut, F & Welling, GW (1999) A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in fecal samples by fluorescent in situ hybridization. Microbial Ecology Health and Disease 11, 312.CrossRefGoogle Scholar
Hayakawa, K, Mizutani, J, Wada, K, Masai, T, Yoshihara, I & Mitsuoka, T (1990) Effects of soybean oligosaccharides on human faecal flora. Microbial Ecology Health and Disease 3, 293303.CrossRefGoogle Scholar
Hidaka, H (1986) Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora 5, 3750.CrossRefGoogle Scholar
Hu, C & Wang, Y (2001) Effects of supplemental fructooligosaccharide on growth performance, intestinal microflora and digestive enzymes of finishing pigs. Wuxi Qinggong Daxue Xuebao 20, 568572, 577.Google Scholar
Hughes, R & Rowland, IR (2001) Stimulation of apoptosis by two prebiotic chicory fructans in the rat colon. Carcinogenesis 22, 4347.CrossRefGoogle ScholarPubMed
Hussein, HS (1999) Petfood applications of inulin and oligofructose. Journal of Nutrition 129, 1454S1456S.CrossRefGoogle ScholarPubMed
Hussein, HS, Campbell, JM, Bauer, LL, Fahey, GC, Hogarth, AJ, Wolf, BW & Hunter, DE (1998) Selected fructooligosaccharide composition of pet-food ingredients. Journal of Nutrition 128, 2803S2805S.CrossRefGoogle ScholarPubMed
Ito, M, Deguchi, Y, Mitamori, A, Matsumoto, K, Kikuchi, H, Kobayashi, Y, Yajima, T & Kan, T (1990) Effects of administration of galactooligosaccharides on the human fecal microflora, stool weight and abdominal sensation. Microbial Ecology Health and Disease 3, 285292.CrossRefGoogle Scholar
Ito, M, Kimura, M, Deguchi, Y, Miyamori-Watabe, A, Yajima, T & Kan, T (1993) Effects of transgalactosylated disaccharides on the human intestinal microflora and their metabolism. Journal of Nutritional Science and Vitaminology 39, 279288.CrossRefGoogle ScholarPubMed
Janssens, G, Decuypere, J & Van Loo, J (2003) Managing the gastrointestinal tract with inulin and oligofructose: research update and application perspectives in swine diets. Proceedings of Western Nutrition Conference (In the Press).Google Scholar
Jaskari, J, Konbula, P, Siitonen, A, Jousimes-Somen, H, Matilla-Sandholm, T & Poutamen, K (1998) Oat beta-glucan and xylan hydrolyzates as selective substrates for Bifidobacterium and Lactobacillus strains. Applied Microbiology and Biotechnology 49, 175181.CrossRefGoogle Scholar
Kanauchi, O (2003) Germinated barley foodstuff, a prebiotic product, ameliorates inflammation of colitis through modulation of the enteric environment. Journal of Gastroenterology 38, 134141.CrossRefGoogle ScholarPubMed
Kanauchi, O, Hitomi, Y, Agata, K, Nakamura, T & Fushiki, T (1998 a) Germinated barley foodstuff improves constipation induced by loperamide in rats. Bioscience Biotechnology and Biochemistry 62, 17881790.CrossRefGoogle ScholarPubMed
Kanauchi, O, Nakamura, T, Agata, K, Fushiki, T & Hara, H (1998 b) Effects of germinated barley foodstuff in preventing diarrhea and forming normal feces in ceco-colectomized rats. Bioscience Biotechnology and Biochemistry 62, 366368.Google Scholar
Kanauchi, O, Nakamura, T, Agata, K, Mitsuyama, K & Iwanaga, T (1998 c) Effects of germinated barley foodstuff on dextran sulfate sodium-induced colitis in rats. Journal of Gastroenterology 33, 179188.Google Scholar
Kaneko, T, Kohmoto, T, Kikuchi, H, Shiota, M, Iino, H & Mitsuoka, T (1994) Effects of isomaltooligosaccharides with different degrees of polymerization on human fecal bifidobacteria. Bioscience Biotechnology and Biochemistry 58, 22882290.Google Scholar
Kaneko, T, Yokoyama, A & Suzuki, M (1995) Digestibility characteristics of isomaltooligosaccharides in comparison with several saccharides using the rat jejunum loop method. Bioscience Biotechnology and Biochemistry 59, 11901194.CrossRefGoogle ScholarPubMed
Kaplan, H & Hutkins, RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and lactobacilli. Applied Environmental Microbiology 66, 26822684.CrossRefGoogle Scholar
Katz, JA (2002) Advances in the medical therapy of inflammatory bowel disease. Current Opinion in Gastroenterology 18, 435440.CrossRefGoogle ScholarPubMed
Kazuhiro Hirayama, JR (2000) The role of probiotic bacteria in cancer prevention. Microbes and Infection 2, 681686.CrossRefGoogle Scholar
Kleessen, B, Hartmann, L & Blaut, M (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. British Journal of Nutrition 86, 291300.CrossRefGoogle ScholarPubMed
Kleessen, B, Stoof, G, Proll, J, Schmiedle, D, Noack, J & Blaut, M (1997 a) Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. Journal of Animal Science 75, 24532462.CrossRefGoogle ScholarPubMed
Kleessen, B, Sykura, B, Zunft, HJ & Blaut, M (1997 b) Effects of inulin and lactose on fecal microflora, microbial activity and bowel habit in elderly constipated persons. American Journal of Clinical Nutrition 65, 13971402.CrossRefGoogle ScholarPubMed
Knol, J (2001) Stimulation of endogenous bifidobacteria in term infants by an infant formula containing prebiotics. Journal of Pediatric Gastroenterology and Nutrition 32, 399.Google Scholar
Kohmoto, T, Fukui, F, Takaku, H, Machida, Y, Arai, M & Mitsuoka, T (1988) Effect of isomalto-oligosaccharides on human fecal flora. Bifidobacteria Microflora 7, 6169.CrossRefGoogle Scholar
Kohmoto, T, Fukui, F, Takaku, H & Mitsuoka, T (1991) Dose-response test of isomaltooligosaccharides for increasing fecal bifidobacteria. Agricultural and Biological Chemistry 55, 21572159.Google Scholar
Kok, N, Roberfroid, M, Robert, A & Delzenne, N (1996) Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. British Journal of Nutrition 76, 881890.CrossRefGoogle ScholarPubMed
Kok, NN, Taper, HS & Delzenne, NM (1998) Oligofructose modulates lipid metabolism alterations induced by a fat-rich diet in rats. Journal of Applied Toxicology 18, 4753.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Kruse, H-P, Kleessen, B & Blaut, M (1999) Effects of inulin on faecal bifidobacteria in human subjects. British Journal of Nutrition 82, 375382.Google Scholar
Kumemura, M, Hashimoto, F, Fujii, C, Matsuo, K, Kimura, H, Miyazoe, R, Okamatsu, H, Inokuchi, T, Ito, H, Oizumi, K & Oku, T (1992) Effects of administration of 4G-beta-D-galactosylsucrose on fecal microflora putrefactive products, short chain fatty acids, weight, moisture, and subjective sensation of defecation in the elderly with constipation. Journal of Clinical Biochemistry and Nutrition 13, 199210.CrossRefGoogle Scholar
Langendijk, PS, Schut, F, Jansen, GJ, Raangs, GC, Kamphuis, GR, Wilkinson, MHF & Welling, GW (1995) Quantitative fluorescent in situ hybridisation of Bifidobacterium with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Applied Environmental Microbiology 61, 30693075.CrossRefGoogle ScholarPubMed
Langkilde, AM, Andersson, H, Schweizer, TF & Torsdottir, I (1990) Nutrients excreted in ileostomy effluents after consumption of mixed diets with beans or potatoes. I. Minerals, protein, fat and energy. European Journal of Clinical Nutrition 44, 559566.Google ScholarPubMed
Lehmann, U, Jacobasch, G & Scmiedl, D (2002) Characterization of resistant starch type III from banana ( Musa acuminata ). Journal of Agriculture Food and Chemistry 50, 52365240.CrossRefGoogle ScholarPubMed
Levitt, MD & Bond, J (1977) Use of the constant perfusion technique in the nonsteady state. Gastroenterology 73, 14501453.CrossRefGoogle ScholarPubMed
Levrat, MA, Rémésy, C & Demigné, C (1991) High propionic-acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.Google ScholarPubMed
Liesack, W & Stackebrandt, E (1992) Unculturable microbes detected by molecular sequences and probes. Biodiversity and Conservation 1, 250262.Google Scholar
Lipke, C, Adermann, K, Raida, M, Magert, HJ, Forssmann, WG & Zucht, HD (2002) Human milk provides peptides highly stimulating the growth of bifidobacteria. European Journal of Biochemistry 269, 712718.CrossRefGoogle Scholar
Macfarlane, GT, Gibson, GR & Cummings, JH (1992) Comparison of fermentation reactions in different regions of the human colon. Journal of Applied Bacteriology 72, 5662.CrossRefGoogle ScholarPubMed
Macfarlane, GT, Macfarlane, S & Gibson, GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colonic microbiota. Microbial Ecology 35, 180187.CrossRefGoogle Scholar
Majamaa, H (1997) Probiotics: a novel approach in the management of food allergy. Journal of Allergy and Clinical Immunology 99, 179185.CrossRefGoogle ScholarPubMed
Manz, W, Amann, R, Ludwig, W, Vancanneyt, M & Schleifer, K-H (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142, 10971106.Google Scholar
Marx, SP, Winkler, S & Hartmeier, W (2000) Metabolization of β-(2,6) linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiology Letters 182, 163169.Google ScholarPubMed
Matsumoto, K, Kobayashi, Y, Ueyama, S, Watanabe, T, Tanaka, R, Kan, T, Kuroda, A & Sumihara, Y (1993) Galactooligosaccharides. In Oligosaccharides: Production, Properties and Applications (Japanese Technology Reviews), pp. 90106 [Nakakuki, T, editor]. Switzerland: Gordon & Breach Science Publishers.Google Scholar
Menne, E, Guggenbuhl, N & Roberfroid, M (2000) Fn-type chicory inulin hydrolysate has a prebiotic effect in humans. Journal of Nutrition 130, 11971199.CrossRefGoogle Scholar
Meyer, DP, Tungland, BC, Causey, JL & Slavin, JL (2000) The immune effects of inulin in vitro and in vivo. Agro-Food Industry Hi Tech 11, 1820.Google Scholar
Minami, Y, Yazawa, K, Tamura, Z, Tanaka, T & Yamamoto, T (1983) Selectivity of utilization of galactosyl-oligosaccharides by bifidobacteria. Chemical and Pharmaceutical Bulletin 31, 16881691.CrossRefGoogle ScholarPubMed
Mitsuoka, T, Hidaka, H & Eida, T (1987) Effect of fructo-oligosaccharides on intestinal microflora. Nahrung 31, 427436.CrossRefGoogle ScholarPubMed
Molis, C, Flourié, B, Ouarne, F, Gailing, MF, Lartigue, S, Guibert, A, Bornet, F & Galmiche, JP (1996) Digestion, excretion, and energy value of fructooligosaccharides in healthy humans. American Journal of Clinical Nutrition 64, 324328.CrossRefGoogle ScholarPubMed
Morisse, JP (1993) Assessment of the activity of a fructo-oligosaccharide on different cecal parameters in rabbits experimentally infected with E. coli 0·103. Annals of Zootechnology 42, 8187.CrossRefGoogle Scholar
Moro, G, Minoli, I, Mosca, M, Fanaro, S, Jelinek, J, Stahl, B & Boehm, G (2002) Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. Journal of Pediatric Gastroenterology and Nutrition 34, 291295.Google ScholarPubMed
Murphy, O (2001) Non-polyol low-digestible carbohydrates: food applications and functional benefits. British Journal of Nutrition 85, S47S53.CrossRefGoogle ScholarPubMed
Muyzer, G & Smalla, K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leewenhoek 73, 127141.CrossRefGoogle Scholar
Nilsson, U & Bjorck, I (1988) Availability of cereal fructans and inulin in the rat intestinal tract. Journal of Nutrition 118, 14821486.Google Scholar
Nilsson, U, Oste, R, Jagerstad, M & Birkhed, D (1988) Cereal fructans: in vitro and in vivo studies on availability in rats and humans. Journal of Nutrition 118, 13251330.Google Scholar
Ohkusa, T, Ozaki, Y, Sato, C, Mikuni, K & Ikeda, H (1995) Long-term ingestion of lactosucrose increases Bifidobacterium sp. in human fecal flora. Digestion 56, 415420.CrossRefGoogle ScholarPubMed
Okazaki, M, Fujikawa, S & Matsumoto, N (1990) Effects of xylooligosaccharide on growth of bifidobacteria. Journal of the Japanese Society for Nutrition and Food Science 43, 395401.CrossRefGoogle Scholar
Oku, T (1994) Special physiological functions of newly developed mono- and oligosaccharides. In Functional Foods: Designer Foods, Pharma Foods, Nutraceuticals, pp. 202217 [Goldberg, I, editor]. London: Chapman & Hall.CrossRefGoogle Scholar
Oku, T, Tokunaga, T & Hosoya, N (1984) Nondigestibility of a new sweetener, ‘Neosugar’, in the rat. Journal of Nutrition 114, 15741581.CrossRefGoogle ScholarPubMed
Olano-Martin, E, Gibson, GR & Rastall, RA (2002) Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. Journal of Applied Microbiology 93, 505511.CrossRefGoogle ScholarPubMed
Olano-Martin, E, Mountzouris, KC, Gibson, GR & Rastall, RA (2000) In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. British Journal of Nutrition 83, 247255.Google Scholar
Oli, MW, Petschow, BW & Buddington, RK (1998) Evaluation of fructooligosaccharide supplementation of oral electrolyte solutions for treatment of diarrhea. Recovery of the intestinal bacteria. Digestive Diseases and Sciences 43, 138147.CrossRefGoogle ScholarPubMed
Oyarzabal, OA & Conner, D (1996) Application of direct-fed microbial bacteria and fructooligosaccharides for salmonella control in broilers during feed withdrawal. Poultry Science 75, 186190.CrossRefGoogle ScholarPubMed
Phillips, SF & Giller, J (1973) The contribution of the colon to electrolyte and water conservation in man. Journal of Laboratory and Clinical Medicine 81, 733746.Google ScholarPubMed
Pierre, F, Perrin, P, Champ, M, Bornet, F, Meflah, K & Menanteau, J (1997) Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Research 57, 225228.Google ScholarPubMed
Piva, A, Panciroli, A, Meola, E & Formigoni, A (1996) Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets. Journal of Nutrition 126, 280289.Google Scholar
Playne, MJ & Crittenden, R (1996) Commercially available oligosaccharides. Bulletin of the International Dairy Foundation 313, 1022.Google Scholar
Pool-Zobel, B, Van Loo, J, Rowland, I & Roberfroid, MB (2002) Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. British Journal of Nutrition 87, S273S281.CrossRefGoogle ScholarPubMed
Poulsen, M, Mølck, AM & Jacobsen, BL (2002) Different effects of short- and long-chained fructans on large intestinal physiology and carcinogen-induced aberrant crypt foci in rats. Nutrition and Cancer 42, 194205.CrossRefGoogle Scholar
Probert, HM & Gibson, GR (2002) Investigating the prebiotic and gas-generating effects of selected carbohydrates on the human colonic microflora. Letters to Applied Microbiology 35, 473480.CrossRefGoogle ScholarPubMed
Quemener, B (1994) Determination of inulin and oligofructose in food products, and integration in the AOAC method for measurement of total dietary fibre. Lebensmittel Wissenschaften Technologie 27, 125132.Google Scholar
Rafter, J (2002) Scientific basis of biomarkers and benefits of functional foods for reduction of disease risk: cancer. British Journal of Nutrition 88, S219S224.CrossRefGoogle ScholarPubMed
Rao, VA (2001) The prebiotic properties of oligofructose at low intake levels. Nutrition Research 6, 843848.CrossRefGoogle Scholar
Reddy, BS, Hamid, R & Rao, CV (1997) Effect of dietary oligofructose and inulin on colonic preneoplastic aberrant crypt foci inhibition. Carcinogenesis 18, 13711374.CrossRefGoogle ScholarPubMed
Rivero-Urgell, M & Santamaria-Orleans, O (2001) Oligosaccharides: application in infant food. Early Human Development 65, S43S52.CrossRefGoogle ScholarPubMed
Roberfroid, MB (1998) Prebiotics and synbiotics: concepts and nutritional properties. British Journal of Nutrition 80, S197S202.CrossRefGoogle ScholarPubMed
Roberfroid, MB (2002) Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition 87, S139S143.Google Scholar
Roberfroid, MB, Van Loo, JAE & Gibson, GR (1998) The bifidogenic nature of chicory inulin and its hydrolysis products. Journal of Nutrition 128, 1119.CrossRefGoogle ScholarPubMed
Rowland, IR, Rumney, CJ, Coutts, JT & Lievense, LC (1998) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19, 281285.CrossRefGoogle ScholarPubMed
Rowland, IR & Tanaka, R (1993) The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human fecal microflora. Journal of Applied Bacteriology 74, 667674.CrossRefGoogle Scholar
Rycroft, CE, Jones, MR, Gibson, GR & Rastall, RA (2001) Fermentation properties of gentio-oligosaccharides. Letters to Applied Microbiology 32, 156161.CrossRefGoogle ScholarPubMed
Sahota, SS, Bramley, PM & Menzies, IS (1982) The fermentation of lactulose by colonic bacteria. Journal of General Microbiology 128, 319325.Google ScholarPubMed
Schaafsma, G, Meuling, WJ, van Dokkum, W & Bouley, C (1998) Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. European Journal of Clinical Nutrition 52, 436440.Google Scholar
Schell, MA, Karmirantzou, M, Snel, B, Vilanova, D, Berger, B, Pessi, G, Zwahlen, MC, Desiere, F, Bork, P, Delley, M, Pridmore, RD & Arigoni, F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proceedings of the National Academy of Sciences USA 99, 1442214427.CrossRefGoogle Scholar
Scholz-Ahrens, KE, Acil, Y & Schrezenmeir, J (2002) Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. British Journal of Nutrition 88, 365377.Google Scholar
Silvi, S, Rumney, CJ, Cresci, A & Rowland, IR (1999) Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with feces from Italian and UK donors. Journal of Applied Microbiology 86, 521530.Google Scholar
Sparkes, AH, Papasouliotis, K, Sunvold, G, Werrett, G, Gruffydd-Jones, EA, Egan, K, Gruffydd-Jones, TJ & Reinhart, G (1998) Effect of dietary supplementation with fructo-oligosaccharides on fecal flora of healthy cats. American Journal of Veterinary Research 59, 436440.CrossRefGoogle ScholarPubMed
Steffan, RJ & Atlas, RM (1991) Polymerase chain reaction: applications in environmental microbiology. Annual Review of Microbiology 45, 137161.Google Scholar
Suau, A, Bonnet, R, Sutren, M, Godon, J-J, Gibson, GR, Collins, MD & Doré, J (1999) Direct analysis of genes encoding 16S rDNA from communities reveals many novel molecular species within the human gut. Applied Environmental Microbiology 65, 47994807.Google Scholar
Swanson, KS (2002) Prebiotics and probiotics: impact on gut microbial populations, nutrient digestibilities, fecal protein catabolite concentrations and immune functions of humans and dogs. Dissertation Abstracts International 63, 746.Google Scholar
Szilagyi, A (2002) Review article: lactose – a potential prebiotic. Alimentary Pharmacology and Therapeutics 16, 15911602.Google Scholar
Szilagyi, A, Rivard, J & Shrier, I (2002) Diminished efficacy of colonic adaptation to lactulose occurs in patients with inflammatory bowel disease in remission. Digestive Diseases and Science 47, 28112822.Google Scholar
Tahiri, M, Tressol, JC, Arnaud, J, Bornet, F, Bouteloup-Demange, C, Feillet-Coudray, C, Ducros, V, Pepin, D, Brouns, F, Rayssiguier, AM & Coudray, C (2001) Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. Journal of Bone Mineral Research 16, 21522160.Google Scholar
Tamura, Z (1983) Nutriology of bifidobacteria. Bifidobacteria Microflora 2, 316.CrossRefGoogle Scholar
Tanaka, R, Takayama, H, Morotomi, M, Kuroshima, T, Ueyama, S, Matsumoto, K, Kuroda, A & Mutai, M (1983) Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobacteria Microflora 2, 1724.CrossRefGoogle Scholar
Tannock, GW (2002) Probiotics and prebiotics: where are we going? In Probiotics and Prebiotics, pp.139 [Tannock, GW, editor]. Wymondham UK: Caister Academic Press.Google Scholar
Taper, HS, Lemort, C & Roberfroid, MB (1998) Inhibition effect of dietary inulin and oligofructose on the growth of transplantable mouse tumour. Anticancer Research 18, 41234126.Google Scholar
Taper, HS & Roberfroid, M (1999) Influence of inulin and oligofructose on breast cancer and tumour growth. Journal of Nutrition 129, 14881491.Google Scholar
Terada, A, Hara, H, Kato, S, Kimura, T, Fujimori, I, Hara, K, Maruyama, T & Mitsuoka, T (1993) Effect of lactosucrose (4G-beta-D-galactosylsucrose) on fecal flora and fecal putrefactive products of cats. Journal of Veterinary Medical Science 55, 291295.CrossRefGoogle ScholarPubMed
Tomoda, T, Nalano, Y & Kageyama, T (1991) Effect of yogurt and yogurt supplemented with Bifidobacterium and/or lactulose in healthy persons: a comparative study. Bifidobacteria Microflora 10, 123130.CrossRefGoogle Scholar
Tomomatsu, H (1994) Health effects of oligosaccharides. Food Technology 48, 6165.Google Scholar
Tsukahara, T, Koyama, H, Okada, M & Ushida, K (2002) Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. Journal of Nutrition 132, 22292234.CrossRefGoogle ScholarPubMed
Tuohy, KM, Kolida, S, Lustenberger, AM & Gibson, GR (2001) The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides – a human volunteer study. British Journal of Nutrition 86, 341348.CrossRefGoogle ScholarPubMed
Tuohy, KM, Ziemer, CJ, Klinder, A, Knöbel, Y, Pool-Zobel, BL & Gibson, GR (2002) A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microbial Ecology in Health and Disease 14, 165173.CrossRefGoogle Scholar
Valette, JP, Franquet, B & Wolter, R (1993) Calcul de la ration du cheval trotteur (Calculation of the daily ration of the horse- trotter). Equathlon 5, 89.Google Scholar
Vandenplas, Y (2002) Oligosaccharides in infant formula. British Journal of Nutrition 87, S293S296.CrossRefGoogle ScholarPubMed
van der Heuvel, EG, Muys, T, van Dokkum, W & Schaafsma, G (1999) Oligofructose stimulates calcium absorption in adolescents. American Journal of Clinical Nutrition 69, 544548.CrossRefGoogle Scholar
van Houte, J & Gibbons, RJ (1966) Studies of the cultivable flora of normal human feces. Antonie van Leeuwenhoek 32, 212222.CrossRefGoogle ScholarPubMed
van Laere, KMJ, Hartemink, R, Beldman, G, Pitson, S, Dijkema, C, Schols, HA & Voragen, AGJ (1999) Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 alpha-galactosidase. Applied Microbiology and Biotechnology 52, 681688.Google Scholar
Verghese, M, Rao, DR, Chawan, CB, Williams, LL & Shackelford, L (2002) Dietary inulin suppresses azoxymethane-induced aberrant crypt foci and colon tumors at the promotion stage in young Fisher 344 rats. Journal of Nutrition 132, 28092813.CrossRefGoogle ScholarPubMed
Videla, S, Vilaseca, J, Antolin, M, Garcia-Lafuente, A, Guarner, F, Crespo, E, Casalots, J, Salas, A & Malagelada, JR (2001) Dietary inulin improves distal colitis induced by dextran sodium sulfate in the rat. American Journal of Gastroenterology 96, 14681493.CrossRefGoogle ScholarPubMed
Waldroup, AL, Skinner, JT, Hierholzer, RE & Waldroup, PW (1993) An evaluation of fructooligosaccharide in diets for broiler chickens and effects on salmonellae contamination of carcasses. Poultry Science 72, 643650.CrossRefGoogle ScholarPubMed
Wang, X, Brown, IL, Khaled, D, Mahoney, MC, Evans, AJ & Conway, PL (2002) Manipulation of colonic bacteria and volatile fatty acid production by dietary high amylose maize (amylomaize) starch granules. Journal of Applied Microbiology 93, 390397.CrossRefGoogle ScholarPubMed
Wang, X & Gibson, GR (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.Google Scholar
White, LA, Newman, MC, Comwell, GL & Lindemann, MD (2002) Brewers dried yeast as a source of mannan oligosaccharides for weaning pigs. Journal of Animal Science 80, 26192628.Google Scholar
Wijnands, MV, Schoterman, HC, Bruijntjes, JB, Hollanders, VM & Woutersen, RA (2001) Effect of dietary galacto-oligosaccharides on azoxymethane-induced aberrant crypt foci and colorectal cancer in Fischer 344 rats. Carcinogenesis 22, 127132.Google Scholar
Willard, MD, Simpson, RB, Cohen, ND & Clancy, JS (2000) Effects of dietary fructooligosaccharides on selected populations in feces of dogs. American Journal of Veterinary Research 61, 820825.Google Scholar
Williams, CH, Witherly, SA & Buddington, RK (1994) Influence of dietary neosugar on selected bacterial groups of the human fecal microbiota. Microbial Ecology of Health and Disease 7, 9197.CrossRefGoogle Scholar
Wollowski, I, Rechkemmer, G, Pool-Zobel, BL (2001) Protective role of probiotics and prebiotics in colon cancer. American Journal of Clinical Nutrition 73, 451S455S.CrossRefGoogle ScholarPubMed
Xu, ZR, Hu, CH & Wang, MQ (2002 a) Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. Journal of General Applied Microbiology 48, 8389.Google Scholar
Xu, ZR, Zou, XT, Hu, CH, Xia, MS, Zhan, XA & Wang, MQ (2002 b) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs. Asian-Australasian Journal of Animal Science 15, 17841789.Google Scholar
Yamada, H (1993) Structure and properties of oligosaccharides from wheat bran. Cereal Foods World 38, 490492.Google Scholar
Yusrizal, X & Chen, TC (2003 a) Effect of adding chicory fructans in feed on fecal and intestinal flora. International Journal of Poultry Science 2, 188194.Google Scholar
Yusrizal, X & Chen, TC (2003 bs) Effect of adding chicory fructans in feed on broiler growth performance serum cholesterol and intestinal length. International Journal of Poultry Science 2, 214219.Google Scholar
Ziesenitz, SC & Siebert, G (1987) In vitro assessment of nystose as a sugar substitute. Journal of Nutrition 117, 846851.CrossRefGoogle ScholarPubMed
Zoetendal, EG, Akkermans, ADL & De Vos, WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied Environmental Microbiology 64, 38543859.Google Scholar