Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T03:14:45.122Z Has data issue: false hasContentIssue false

The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview

Published online by Cambridge University Press:  14 December 2007

J. A. Decuypere
Affiliation:
Department of Animal Production, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Proefhoevestraat 10, B-9090 MELLE, Belgium
N. A. Dierick*
Affiliation:
Department of Animal Production, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Proefhoevestraat 10, B-9090 MELLE, Belgium
*
*Corresponding author: Dr N. A. Dierick, fax +32 9 264 90 99, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the search for alternatives to banned in-feed antibiotics, a concept was developed based on studies with medium-chain fatty acid-containing triacylglycerols (MCTAG) and selected lipases for in situ generation of diacylglycerols, monoacylglycerols and medium-chain fatty acids (MCFA) in the stomach and proximal gut of piglets. MCFA are known to have strong antibacterial properties but can hardly be used as such because of their repellent odour and taste. Those problems could be overcome by the generation of MCFA in situ. The concept was tested in vitro and validated in vivo with gastric-cannulated piglets and under field conditions, including effects on zootechnical performance, with classical antibacterial growth promoters or organic acids acting as positive controls. Furthermore, the metabolic and dietary constraints on the nutritional and nutritive use of MCTAG and/or MCFA (for example, the effects on digestive physiology, gut flora, feed intake, performance, carcass composition) are reviewed. The role of natural preduodenal lipase activity, the presence of endogenous plant lipase activity in raw materials and the feasibility for exogenous lipase addition to the feed are discussed, in order to optimize the concept. The present review illustrates the similarity of the action of MCFA and commonly used antimicrobials on the flora (total flora, Gram-positive flora, Gram-negative flora, potential pathogens) and epithelial morphology and histology in the foregut. These observations are believed to be the basis for obtaining optimal growth performances. In addition, these naturally occurring antimicrobial agents have little or no human or animal toxicity and induce no problems of residues and cross-resistance induction. They are proposed as a valuable alternative to in-feed antibiotics, used for growth promotion, and even for the preventive and curative treatment of gastrointestinal diseases.

Type
Research Article
Copyright
Copyright © The Authors 2003

References

Akkermans, A, Konstantinov, S, Zhu, W, Favier, C & Williams, B (2003) Postnatal development of the intestinal microbiota of the pig. In Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, vol. 1, pp. 4956 [Ball, R editor]. Edmonton, Canada: University of Alberta.Google Scholar
Allee, G, Romsos, D, Leveille, G & Baker, D (1972) Metabolic consequences of dietary medium-chain triglycerides in the pig. Proceedings of the Society for Experimental Biology and Medicine 139 , 422427.CrossRefGoogle ScholarPubMed
Alzueta, C, Ortiz, L, Rebole, A, Rodriguez, M, Centeno, C & Trevino, J (2002) Effects of removal of mucilage and enzyme or sepiolite supplementation on the nutrient digestibility and metabolizable energy of a diet containing linseed in broiler chickens. Animal Feed Science and Technology 97 , 169181.CrossRefGoogle Scholar
Anderson, D, McCracken, V, Aminov, R, Simpson, J, Mackie, R, Verstegen, M & Gaskins, H (1999) Gut microbiology and growth-promoting antibiotics in swine. Pig News and Information 20 , 115N122N.Google Scholar
Andoh, A, Takaya, H, Araki, Y, Tsujikawa, T, Fujiyama, Y & Bamba, T (2000) Medium- and long-chain fatty acids differentially modulate interleukin-8 secretion in human fetal intestinal epithelial cells. Journal of Nutrition 130 , 26362640.CrossRefGoogle ScholarPubMed
Aurousseau, B, Thivend, P & Vermorel, M (1984) Influence du remplacement d'une partie du suif d'un aliment par la tricaproqne ou de la tricapryline en assocation à de l'huile de coprah sur la croissance du jeune veau préruminant (Influence of replacement of part of the tallow in a food by tricaproqne or tricapryline in association with coconut oil on the growth of young preruminant calves). Annales de Zootechnie 33 , 219234.CrossRefGoogle Scholar
Averette Gatlin, L, Odle, J, Soede, J & Hansen, J (2002) Dietary medium- or long-chain triglycerides improve body condition of lean-genotype sows and increase suckling pig growth. Journal of Animal Science 80 , 3844.CrossRefGoogle Scholar
Azain, M (1993) Effects of adding medium-chain triglycerides to sow diets during late gestation and early lactation on litter performance. Journal of Animal Science 71 , 30113019.CrossRefGoogle ScholarPubMed
Beisson, F, Ferté, N, Bruley, S, Voultoury, R, Verger, R & Arondel, V (2001) Oil-bodies as substrates for lipolytic enzymes. Biochimica et Biophysica Acta 1531 , 4758.CrossRefGoogle ScholarPubMed
Bergner, H & Sommer, A (1994) Einsatz von freien Fettsäuren in der Tierernährung (Use of free fatty acids in animal nutrition). Archives of Animal Nutrition 46 , 217236.Google ScholarPubMed
Boddie, R & Nickerson, S (1992) Evaluation of postmilking teat germicides containing Lauricidin®, saturated fatty acids and lactic acid. Journal of Dairy Science 75 , 17251750.CrossRefGoogle ScholarPubMed
Brouns, F & Van der Vusse, G (1998) Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. British Journal of Nutrition 79 , 117128.CrossRefGoogle ScholarPubMed
Canas-Rodriguez, A & Smith, W (1966) The identification of the antimicrobial factors of the stomach contents of sucking rabbits. Biochemical Journal 100 , 7982.CrossRefGoogle ScholarPubMed
Cera, K, Mahan, D & Reinhart, G (1989 a) Apparent fat digestibilities and performances responses of postweaning swine fed diets supplemented with coconut oil, corn oil or tallow. Journal of Animal Science 67 , 20402047.CrossRefGoogle Scholar
Cera, K, Mahan, D & Reinhart, G (1989 b) Postweaning swine performances and serum profile responses to supplemental medium-chain free fatty acids and tallow. Journal of Animal Science 67 , 20482055.CrossRefGoogle Scholar
Cerchiari, E (2000) Active matrix technology making more of acids. Pig Progress 16 , 3435.Google Scholar
Cherrington, C, Hinton, M, Mead, G & Chopra, I (1991) Organic acids: chemistry, antibacterial activity and practical applications. Advances in Microbial Physiology 32 , 87108.CrossRefGoogle ScholarPubMed
Chiang, S, Pettigrew, J, Clarke, S & Cornelius, S (1990 a) Digestion and absorption of fish oil by neonatal piglets. Journal of Nutrition 118 , 17411743.Google Scholar
Chiang, S, Pettigrew, J, Clarke, S & Cornelius, S (1990 b) Limits of medium-chain and long-chain triacylglycerol utilization by neonatal piglets. Journal of Animal Science 68 , 16321638.CrossRefGoogle ScholarPubMed
Clark, S, Brause, B & Holt, P (1969) Digestion and absorption of fat in the rat stomach. Gastroenterology 56 , 214222.CrossRefGoogle ScholarPubMed
Coates, M (1980) The gut microflora and growth. In Growth in Animals, pp. 175180 [Lawrence, T editor]. Boston, MA: Butterworths.CrossRefGoogle Scholar
Committee on Food Chemicals Codex (1981) Food Chemicals Codex, [Institute of Medicine of Washington DC, Editor] Oxford, UK: National Academy Press.Google Scholar
Cowan, M (1999) Plant products as antimicrobial agents. Clinical Microbiology Reviews 12 , 564582.CrossRefGoogle ScholarPubMed
Crozier, G, Bois-Joyeux, B, Chanez, M, Girard, J & Peret, J (1987) Metabolic effects induced by long-term feeding of medium-chain triglycerides in the rat. Metabolism 36 , 807814.CrossRefGoogle ScholarPubMed
Czernichow, B, Galluser, M, Cui, S, Gosse, F & Raul, F (1996) Comparison of enteral or parenteral administration of medium chain triglycerides on intestinal mucosa in adult rats. Nutrition Research 16 , 797804.CrossRefGoogle Scholar
Decuypere, J, Dierick, N, Vervaeke, I & Henderickx, H (1991) Influence of Virginiamycin on the digestive physiology in precaecal re-entrant cannulated piglets. Archives of Animal Nutrition 41 , 373393.Google Scholar
Decuypere, J & Meeus, J (1995) Aspects nouveaux de la mode d'action des acides dans l'alimentation porcine (New aspects of the mode of action of acids in pig feed). Journée d'Étude Kemin Europa, Rennes (France), 27 Juin, 1995. Herentals, Belgium: Kemin Europa.Google Scholar
De Rodas, B & Maxwell, C (1990) The effect of fat source and medium-chain triglyceride level on performance of the early-weaning pig. In Animal Science Research Report, pp. 278287. Stillwater, OK: Oklahoma Agricultural Experimental Station.Google Scholar
Dierick, N & Decuypere, J (2002) Endogenous lipolysis in feedstuffs and compound feeds for pigs: effects of storage time and conditions and exogenous lipase and/or emulsifier addition. Animal Feed Science and Technology 102 , 5370.CrossRefGoogle Scholar
Dierick, N, Decuypere, J & Degeyter, I (2003) The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition. Archives of Animal Nutrition 57 , 4963.CrossRefGoogle Scholar
Dierick, N, Decuypere, J, Molly, K, Van Beek, E & Vanderbeke, E (2002 a)The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative for nutritional antibiotics in piglet nutrition. I. In vitro screening of the release of MCFAs from selected fat sources by selected exogenous lipolytic enzymes in simulated pig gastric conditions and their effects on the gut flora of piglets. Livestock Production Science 75 , 129142.CrossRefGoogle Scholar
Dierick, N, Decuypere, J, Molly, K, Van Beek, E & Vanderbeke, E (2002 b) The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative for nutritional antibiotics in piglet nutrition. II. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance. Livestock Production Science 76 , 116.CrossRefGoogle Scholar
Dierick, N, Decuypere, J, Vervaeke, I & Henderickx, H (1981) Resorption of amino acids from an isolated loop of the pig's small intestine in vivo: influence of a nutritional dose of Virginiamycin. In Recent Advances in Germfree Research, pp. 369372 [Sasaki, S, Ozawa, A and Hashimoto, K editors]. Tokyo, Japan: Tokai University Press.Google Scholar
Dierick, N, Vervaeke, I, Decuypere, J & Henderickx, H (1986 a) Influence of the gut flora and of some growth-promoting feed additives in nitrogen metabolism in pigs. I. Studies in vitro. Livestock Production Science 14 , 161176.CrossRefGoogle Scholar
Dierick, N, Vervaeke, I, Decuypere, J & Henderickx, H (1986 b) Influence of the gut flora of some growth-promoting feed additives in nitrogen metabolism in pigs. II. Studies in vivo. Livestock Production Science 14 , 177193.CrossRefGoogle Scholar
Dove, C (1993) The effect of adding copper and various fat sources to the diets of weanling swine on growth performance and serum fatty acid profiles. Journal of Animal Science 71 , 21872192.CrossRefGoogle Scholar
Edwards-Webb, J & Thompson, S (1977) Studies on lipid digestion in the preruminant calf. 2. A comparison of the lipolysis of milk fat by salivary and pancreatic lipases in vitro. British Journal of Nutrition 37 , 431440.CrossRefGoogle ScholarPubMed
Fakler, T, Sohn, K & Maxwell, C (1992) Effect of protein and fat source on performance in early weaned pigs. In Oklahoma Agricultural Experimental Station Research Report, pp. 366372. Stillwater, OK: Oklahoma Agricultural Experimental Station.Google Scholar
Fay, J & Farias, R (1975) The inhibitory action of fatty acids on the growth of Escherichia coli. Journal of General Microbiology 91 , 233240.CrossRefGoogle ScholarPubMed
Ferguson, A (1974) Intestinal immunity. The role of intraepithelial lymphocytes. PhD thesis, University of Glasgow, UK.Google Scholar
Freese, E, Sheu, C & Galliers, E (1973) Function of lipophylic acids as antimicrobial food additives. Nature 241 , 321325.CrossRefGoogle Scholar
Galluser, M, Czernichow, H, Gossé, F, Guérold, B, Kachelhofer, J, Doffoel, M & Raul, F (1993) Comparison of different lipid substrates on intestinal adaptation in the rat. Gut 34 , 10691074.CrossRefGoogle ScholarPubMed
Gaskins, H, Collier, C & Anderson, D (2002) Antibiotics as growth promotants: mode of action. Animal Biotechnology 13 , 2942.CrossRefGoogle ScholarPubMed
Glaps, J (1970) Cited by Bergner H & Sommer A (1994) Einsatz von freien Fettsäuren in der Tierenährung (Use of free fatty acids in animal nutrition). Archives of Animal Nutrition 46 , 217236.Google Scholar
Graham, S (1989) Cuphea: a new plant source of medium-chain fatty acids. Critical Reviews in Food Science and Nutrition 28 , 139173.CrossRefGoogle ScholarPubMed
Greenberger, N, Franks, J & Isselbacher, K (1965) Metabolism of 1-C14 octanoic and 1-C14 palmitic acid by rat intestinal slices. Proceedings of the Society for Experimental and Biological Medicine 120 , 468471.CrossRefGoogle Scholar
Guillot, E, Vaugelade, P, Lemarchal, P & Rérat, A (1993) Intestinal absorption and liver uptake of medium-chain fatty acids in non-anaesthetized pigs. British Journal of Nutrition 69 , 431442.CrossRefGoogle ScholarPubMed
Guthery, B (1993) Disinfecting product and process. US patent no. 5·234·703.Google Scholar
Hamosh, M (1997) Introduction: should infant formulas be supplemented with bioactive components and conditionally essential nutrients present in human milk? Journal of Nutrition 127 , 971S974S.CrossRefGoogle Scholar
Hamosh, M, Bitman, J, Liao, T, Mehta, N, Buczek, R, Wood, D, Grylack, L & Hamosh, P (1989) Gastric lipolysis and fat absorption in preterm infants: effect of MCT and LCT containing formulas. Pediatrics 83 , 8692.CrossRefGoogle Scholar
Hamosh, M, Scanlon, J, Ganot, D, Likel, M, Scanlon, K & Hamosh, P (1981) Fat digestion in the newborn. Characterisation of lipase in gastric aspirates of premature and term infants. Journal of Clinical Investigation 67 , 838846.CrossRefGoogle ScholarPubMed
Hendrich, S, Lii, C, Myers, R & Dupont, J (1993) Effect of feeding Cuphea oil to three generations of CBA/2 and C57B1/6 mice. Journal of AOACS International 70 , 797802.Google Scholar
Höller, H (1970) Untersuchungen über Sekret und Sekretion der Cardiadrüsen Zone im Magen des Schweines (Investigations on the secretion of the cardiac zone in the stomach of the pig). Zentralblatt für Veterinarmedizin A17 , 685711.Google Scholar
Hsiao, C & Siebert, K (1999) Modeling the inhibitory effects of organic acids on bacteria. International Journal of Food Microbiology 47 , 189201.CrossRefGoogle ScholarPubMed
Hunt, J & Knox, M (1986) A relation between the chain length of fatty acids and the slowing of gastric emptying. Journal of Physiology 194 , 327336.CrossRefGoogle Scholar
Hurst, G (1978) Crop impactions in bobwhite quail in Louisiana. Journal of Wildlife Diseases 124 , 355.CrossRefGoogle Scholar
Iba, T, Yagi, Y, Kidokoro, A, Ohno, Y, Kaneshiro, Y & Akiyama, T (1998) Total parenteral nutrition supplemented with medium-chain triacylglycerols prevents atrophy of the intestinal mucosa in septic rats. Nutrition 14 , 667671.CrossRefGoogle ScholarPubMed
Ingle, D, Driedger, A, Traul, K & Nakhasi, D (1999) Dietary energy value of medium-chain triglycerides. Journal of Food Science 64 , 960963.CrossRefGoogle Scholar
Isaacs, C (2001) The antimicrobial function of milk lipids. Advances in Nutritional Research 10 , 271285.Google ScholarPubMed
Isaacs, C, Kashyap, S, Heird, W & Thormar, H (1990) Antiviral and antibacterial lipids in human milk and infant formula feeds. Archives of Disease in Childhood 65 , 861864.CrossRefGoogle ScholarPubMed
Isaacs, C, Litov, R, Marie, P & Thormar, H (1992) Addition of lipases to infant formulas produces antiviral and antibacterial activity. Journal of Nutritional Biochemistry 3 , 304308.CrossRefGoogle Scholar
Isaacs, C, Litov, R & Thromar, H (1995) Antimicrobial activity of lipids added to human milk, infant formula and bovine milk. Journal of Nutritional Biochemistry 6 , 362366.CrossRefGoogle ScholarPubMed
Jacobs, M (1940) Some aspects of cell permeability to weak electrolytes. Cold Spring Harbor Symposium on Quantitative Biology 8 , 3039.CrossRefGoogle Scholar
Jean, K-B & Chiang, S-H (1999) Increased survival of neonatal pigs by supplementing medium-chain triglycerides in late-gestating sow diets. Animal Feed Science and Technology 76 , 241250.CrossRefGoogle Scholar
Jenkins, A & Thompson, R (1993) Does the fatty acid profile of dietary fat influence its trophic effect on the small intestinal mucosa. Gut 34 , 358364.CrossRefGoogle ScholarPubMed
Jensen, B (1998) The impact of feed additives on the microbial ecology of the gut in young pigs. Journal of Animal and Feed Science 7 , 4564.CrossRefGoogle Scholar
Jensen, B, Højberg, O, Mikkelsen, L, Hedemann, M & Canibe, N (2003) Enhancing intestinal function to treat and prevent disease. In Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, vol. 1, pp. 103119 [Ball, R editor]. Edmonton, Canada: University of Alberta.Google Scholar
Jensen, M, Jensen, S & Jakobsen, K (1997) Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. Journal of Animal Science 75 , 437445.CrossRefGoogle ScholarPubMed
Jin, C, Kim, J, Han, I, Jung, H & Kwon, C (1998) Effects of various fat sources and lecithin on the growth performance and nutrient utilization in pigs weaned at 21 days of age. Asian Australian Journal of Animal Science 11 , 176184.CrossRefGoogle Scholar
Joerger, R (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poultry Science 82 , 640647.CrossRefGoogle ScholarPubMed
Kabara, J (1984) Medium-chain fatty acids and esters as antimicrobial agents. In Cosmetic and Drug Preservation, Principles and Practice, pp. 275304 [Kabara, J editor]. New York: Marcel Dekker.Google Scholar
Kabara, J, Swieczkowski, D, Conley, A & Truant, J (1972) Fatty acids and derivates as antimicrobial agents. Antimicrobial Agents and Chemotherapy 2 , 2328.CrossRefGoogle ScholarPubMed
Kanai, K & Kondo, E (1979) Antibacterial and cytotoxic aspects of long-chain fatty acids as cell superface events: selected topics. Japanese Journal of Medical Science and Biology 32 , 135174.CrossRefGoogle Scholar
Kimura, Y, Hosoda, Y, Yamaguchi, M, Nagano, H, Shima, M, Adachi, S & Matsuno, R (2001) Effects of medium-chain fatty acids on intracellular calcium levels and the cytoskeleon in human intestinal (Caco-2) cell monolayers. Bioscience Biotechnology and Biochemistry 65 , 743751.CrossRefGoogle Scholar
Kinderlerer, J, Matthias, H & Finner, P (1996) Effect of medium-chain fatty acids in mould ripened cheese on the growth of Listeria monocytogenes. Journal of Dairy Research 63 , 593606.CrossRefGoogle ScholarPubMed
Knarreborg, A, Simon, M, Engberg, R, Jensen, B & Tannock, G (2002) Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages. Applied and Environmental Microbiology 68 , 59185924.CrossRefGoogle ScholarPubMed
Léon, A, Schmidt, I, Strullu, F, Fillaut, M, Gautier, J, Hulin, J, Lebreton, Y, Herpin, P & Dividich, J (1998) Effects of substitution of medium- for long-chain triglycerides in colostrum on the energy metabolism of the newborn pig in relation to environmental temperature. Journées de la Recherche Porcine en France 30 , 275290.Google Scholar
Leser, D, Amenuvor, J, Jensen, T, Lindecrona, R, Boye, M & Møller, K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology 68 , 673690.CrossRefGoogle ScholarPubMed
Li, B, Van Kessel, A, Caine, W, Huang, S & Kirkwood, R (2001) Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Canadian Journal of Animal Science 81 , 511516.CrossRefGoogle Scholar
Li, FC, Hang, YN & Shen, TF (2001) Development of lipase in nursing piglets. Proceedings of the National Science Council Of the Republic of China 25B, 1216.Google Scholar
Lin, C, Chiang, S & Fee, H (1995) Causes of reduced survival of neonatal pigs by medium-chain triglycerides: blood metabolite and behavioral activity approaches. Journal of Animal Science 73 , 20192025.CrossRefGoogle ScholarPubMed
Lindmark, T, Kimura, Y & Artursson, P (1998) Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. Journal of Pharmacology and Experimental Therapy 284 , 362369.Google ScholarPubMed
Lindmark, T, Nikkila, T & Artursson, P (1995) Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. Journal of Pharmacology and Experimental Therapy 275 , 958964.Google ScholarPubMed
Lis-Balchin, M (2003) Feed additives as alternatives to antibiotic growth promoters: botanicals. In Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, vol. 1, pp. 333352 [Ball, R editor]. Edmonton, Canada: University of Alberta.Google Scholar
Mabayo, R, Furuse, M, Kita, K & Okumura, J (1993) Improvement of dietary protein utilisation in chicks by medium chain triglyceride. British Poultry Science 34 , 121130.CrossRefGoogle ScholarPubMed
Mabayo, R, Furuse, M, Murai, A & Okumura, J (1994) Interactions between medium-chain and long-chain triacylglycerols in lipid and energy metabolism in growing chicks. Lipids 29 , 139144.CrossRefGoogle ScholarPubMed
Mabayo, R, Furuse, M, Yang, S & Okumura, J (1992) Medium-chain triacylglycerols enhance release of cholecystokinin in chicks. Journal of Nutrition 122 , 17021705.CrossRefGoogle ScholarPubMed
Mahan, D (1991) Efficacy of initial postweaning diet and supplemental coconut oil or soybean oil for weanling swine. Journal of Animal Science 69 , 13971402.CrossRefGoogle ScholarPubMed
Meeus, J (1994) De antimicrobiële activiteit van organische zuren en pH op de darmflora bij het varken (The antimicrobial activity of organic acids and pH on the gut flora of the pig). Thesis Landbouwkundig Ir., Faculty of Agricultural and Applied Biological Sciences, Ghent University, Belgium.Google Scholar
Molimard, P, Le Quéré, J & Spinner, H (1997) Les lipides et la flaveur des produits laitiers (Lipids and flavours of dairy products). Oléagineux, Corps Gras, Lipides 4 , 301312.Google Scholar
Moreau, H, Gargouri, Y, Lecat, D, Junien, J-L & Verger, R (1988) Screening of preduodenal lipases in several mammals. Biochimica et Biophysica Acta 959 , 247252.CrossRefGoogle ScholarPubMed
Mroz, Z (2003) Organic acids of various origin and physico-chemical forms as potential alternatives to antibiotic growth promoters for pigs. In Proceedings of the 9th International Symposium on Digestive Physiology in Pigs, vol. 1, pp. 267293 [Ball, R editor]. Edmonton, Canada: University of Alberta.Google Scholar
Newcomb, M, Harmon, D, Nellsen, J, Thulin, A & Allee, G (1991) Effect of energy source fed to sows during late gestation on neonatal blood metabolite homeostasis, energy stores and composition. Journal of Animal Science 69 , 230236.CrossRefGoogle ScholarPubMed
Newport, M & Howarth, G (1985) Contribution of gastric lipolysis to the digestion of fat in the neonatal pig. In Proceedings of the 3rd International Seminar on Digestive Physiology in the Pig, Copenhagen, Denmark, 1618 May 1985, pp. 143145 [Just, A, Jorgensen, H and Fernández, JA editors]. Copenhagen, Denmark: National Institute of Animal Science.Google Scholar
Newport, M, Storry, J & Tuckley, B (1979) Artificial rearing of pigs. 7. Medium chain triglycerides as a dietary source of energy and their effect on live-weight gain, feed:gain ratio, carcass compostion and blood lipids. British Journal of Nutrition 41 , 8593.CrossRefGoogle Scholar
O'Connor, J, Perry, H & Harwood, J (1992) A comparison of lipase activity in various cereal grains. Journal of Cereal Science 16 , 15.CrossRefGoogle Scholar
Odle, J (1997) New insights into the utilization of medium-chain triglycerides by the neonate: observations from a piglet model. Journal of Nutrition 127 , 10611067.CrossRefGoogle ScholarPubMed
Odle, J (1999) Medium-chain triglycerides: A unique energy source for neonatal pigs. Pig News and Information 20 , 25N32N.Google Scholar
Odle, J, Bevenenga, N & Crenshaw, T (1991) Utilization of medium-chain triglycerides by neonatal piglets: chain length of even- and odd-carbon fatty acids and apparent digestion/absorption and hepatic metabolism. Journal of Nutrition 121 , 605614.CrossRefGoogle ScholarPubMed
Oh, D-H & Marshall, D (1993) Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes. International Journal of Food Microbiology 20 , 239246.CrossRefGoogle ScholarPubMed
Ostling, C & Lindgren, S (1993) Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acid. Journal of Applied Bacteriology 75 , 1824.CrossRefGoogle Scholar
Ostrowski, H, Rys, R & Morstin, E (1972) cited by Bergner H & Sommer A (1994) Einsatz von freien Fettsäuren in der Tierernährung (Use of free fatty acids in animal nutrition). Archives of Animal Nutrition 46 , 217236.Google Scholar
Pandey, A, Benjamin, S, Soccol, C, Nigam, P, Krieger, N & Soccol, V (1999) The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry 29 , 119131.CrossRefGoogle ScholarPubMed
Partanen, K & Mroz, Z (1999) Organic acids for performance enhancement in pig diets. Nutrition Research Reviews 12 , 117145.CrossRefGoogle ScholarPubMed
Perez-Castorena, A & Maldonado, E (2003) Triterpenes and flavonoid glycosides from Cuphea wrightii. Biochemical Systematics and Ecology 31 , 331334.CrossRefGoogle Scholar
Petersen, D (1999) Lipase activity and lipid metabolism during oat malting. Cereal Chemistry 76 , 159163.CrossRefGoogle Scholar
Petrone, G, Conte, M, Longhi, C, Di Santo, S, Superti, F, Ammendolia, M, Valenti, P & Seganti, L (1998) Natural milk fatty acids affect survival and invasiveness of Listeria monocytogenes. Letters in Applied Bacteriology 27 , 352368.Google ScholarPubMed
Petschow, B, Batema, R, Talbott, R & Ford, L (1998) Impact of medium-chain monoglycerides on intestinal colonisation by Vibrio cholerae or enterotoxigenic Escherichia coli. Journal of Medical Microbiology 47 , 383389.CrossRefGoogle ScholarPubMed
Petterson, DS, Harris, DJ, Rayner, CJ, Blakeney, AB & Choct, M (1999) Methods for the analysis of premium livestock grains. Australian Journal of Agricultural Research 50 , 775787.CrossRefGoogle Scholar
Puupponen-Pimiä, R, Aura, A, Oksman-Caldentey, K, Myllärinen, P, Saarela, M, Mattila-Sandholm, T & Poutanen, K (2002) Development of functional ingredients for gut health. Trends in Food Science and Technology 13 , 311.CrossRefGoogle Scholar
Ricke, S (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science 82 , 632639.CrossRefGoogle ScholarPubMed
Røsjø, C, Nordrum, S, Olli, J, Krogdahl, A, Ruyter, B & Holm, H (2000) Lipid metabolism in Atlantic salmon (Salmo salar) fed medium-chain triglycerides. Aquaculture 190 , 6576.CrossRefGoogle Scholar
Roth, F & Kirchgessner, M (1998) Organic acids as feed additives for young pigs: nutritional and gastrointestinal effects. Journal of Animal and Feed Sciences 7 , 2535.CrossRefGoogle Scholar
Rys, R, Urbanczyk, J & Gawlik, J (1969/1970) Anwendung synthethiser Fettsäuren in der Schweinefütterung (Application of synthesised fatty acids in pig diets). Jahrbuch für Tierernährung und Fütterung 7 , 224231.Google Scholar
Salatino, A, Salatino, M, Dos Santos, D & Patricio, M (2000) Distribution and evolution of secondary metabolites in Eriocaulaceae, Lythraceae and Velloziaceae from ‘campos rupestres’. Genetics and Molecular Biology 23 , 931940.CrossRefGoogle Scholar
Samson, F, Dahl, N & Dahl, D (1956) A study on the narcotic action of the short chain fatty acids. Clinical Investigation 35 , 12911298.CrossRefGoogle Scholar
Sheu, C, Salomon, D, Simmons, J, Sreevalsan, T & Freese, E (1975) Inhibitory effects of lipophilic acids and related compounds on bacteria and mammalian cells. Antimicrobial Agents and Chemotherapy 7 , 349363.CrossRefGoogle ScholarPubMed
Shima, M, Kimura, Y, Adachi, S & Matsuno, R (1998) The relationship between transport-enhancement effects and cell viability by capric acid sodium salt, monocaprin and dicaprin. Bioscience Biotechnology and Biochemistry 62 , 8386.CrossRefGoogle Scholar
Shima, M, Kimura, Y, Adachi, S & Matsuno, R (1999) Recovery of Caco-2 cell monolayers to normal from the transport-enhanced state induced by capric acid sodium salt and its monoacylglycerol. Bioscience Biotechnology and Biochemistry 63 , 680687.CrossRefGoogle ScholarPubMed
Shurson, G, Ku, P, Waxler, G, Yokoyama, M & Miller, E (1990) Physiological relationships between microbiological status and dietary copper levels in the pig. Journal of Animal Science 68 , 10611071.CrossRefGoogle ScholarPubMed
Simpson, M, McCracken, V, White, B, Gaskins, H & Mackie, R (1999) Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. Journal of Microbiological Methods 36 , 167179.CrossRefGoogle ScholarPubMed
Smith, H (1966) The antimicrobial activity of the stomach contents of suckling rabbits. Journal of Pathological Bacteriology 91 , 19.CrossRefGoogle ScholarPubMed
Smith, S (1980) Mechanism of chain length determination in biosynthesis of milk fatty acids. Journal of Dairy Science 63 , 337352.CrossRefGoogle ScholarPubMed
Snel, J, Harmsen, H, Van der Wielen, P & Willimas, B (2002) Dietary strategies to influence the gastro-intestinal microflora of young animals and its potential to improve intestinal health. In Nutrition and Health of the Gastrointestinal Tract, pp. 3769 [Blok, M, Vahl, H, de Lange, L, Van de braak, A, Hemke, L and Hessing, M editors]. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Sprong, R, Hulstein, M & Van Der Meer, R (2002) Bovine milk fat components inhibit food-borne pathogens. International Dairy Journal 12 , 209215.CrossRefGoogle Scholar
Stahly, T (1983) Method for improving the metabolic stability and survival of neonatal pigs. US patent no. 4·423·072.Google Scholar
Stubbs, J & Slabas, A (1982) Ultrastructural and biochemical characterization of the epidermal hairs of the seeds of Cuphea procumbens. Planta 155 , 392399.CrossRefGoogle ScholarPubMed
Symersky, T, Vu, M, Frolich, M, Biemond, I & Masclee, A (2002) The effect of equicaloric medium-chain and long-chain triglycerides on pancreas secretion. Clinical Physiology and Functional Imaging 22 , 307311.CrossRefGoogle Scholar
Takada, R, Shidara, O, Saitoh, M & Mori, T (1992) Effects of feeding medium chain triglycerides on growth performance, digestibility, backfat thickness and fatty acid composition in finishing pigs. Japanese Journal of Swine Science 29 , 3240.CrossRefGoogle Scholar
Takase, S & Goda, T (1990) Effects of medium-chain triglycerides on brush border membrane-bound enzyme activity in rat small intestine. Journal of Nutrition 120 , 969976.CrossRefGoogle ScholarPubMed
Thomke, S & Elwinger, K (1998 a) Growth promotants in feeding pigs and poultry. I. Growth and feed efficiency responses to antibiotic growth promotants. Annales de Zootechnie 47 , 8597.CrossRefGoogle Scholar
Thomke, S & Elwinger, K (1998 b) Growth promotants in feeding pigs and poultry. II. Mode of action of antibiotic growth promotants. Annales de Zootechnie 47 , 153167.CrossRefGoogle Scholar
Thomke, S & Elwinger, K (1998 c) Growth promotants in feeding pigs and poultry. III. Alternatives to antibiotic growth promotants. Annales de Zootechnie 47 , 245271.CrossRefGoogle Scholar
Timmermann, F (1993) Medium chain triglycerides, the unconventional oil. International Food Ingredients 3 , 1118.Google Scholar
Traul, K, Driedger, A, Ingle, D & Nakhasi, D (2000) Review of toxicological properties of medium-chain triglycerides. Food and Chemical Toxicology 38 , 7998.CrossRefGoogle ScholarPubMed
Tsuchido, T, Hiraoka, T, Takano, M & Shibasaki, I (1985) Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short- and medium-chain fatty acids. Journal of Bacteriology 162 , 4246.CrossRefGoogle ScholarPubMed
Van Den Bossche, A, Van Nevel, C, Herman, L, Decuypere, J, De Smet, S, Dierick, N & Heyndrickx, M (2001) PCR-TGGE: a method for fingerprinting the microbial flora in the small intestine of pigs. Mededelingen Faculteit Landbouwkundige Wetenschappen, Universiteit Gent 66 , 359363.Google ScholarPubMed
Van Hoogdalem, E, De Boer, A & Breimer, D (1989) Intestinal drug enhancement: an overview. Pharmacology and Therapeutics Journal 44 , 407433.CrossRefGoogle ScholarPubMed
Van Leeuwen, P, Jansman, A, Esteve-Garcia, E & Van Dijk, J (2001) Effects of Virginiamycin on histology of the small intestinal mucosa in piglets. In Digestive Physiology of Pigs, pp. 274276 [Lindberg, JE and Ogle, B editors]. Wallingford, Oxon: CABI Publishing.Google Scholar
Vega-Lopez, M, Arenas-Contreras, G, Bailey, M, Gonzalez-Pozos, S, Stokes, C, Ortega, M & Mondragon-Flores, R (2001) Development of intraepithelial cells in the porcine small intestine. Developmental Immunology 8 , 147158.CrossRefGoogle ScholarPubMed
Velasquez, O, Seto, R & Rombeau, J (1996) The scientific rationale and clinical application of short-chain fatty acids and medium-chain fatty acids. Proceedings of the Nutrition Society 55 , 4978.CrossRefGoogle Scholar
Verstegen, M & Schaafsma, G (1999) Some developments for antibiotics as growth promotor. In Nutrition and Gastrointestinal Physiology – Today and Tomorrow, pp. 6573 [Jansman, A and Huisman, J editors]. Wageningen, The Netherlands: TNO.Google Scholar
Vervaeke, I, Decuypere, J, Dierick, N & Henderickx, H (1979) Quantitative in vitro evaluation of the energy metabolism influenced by Virginiamycin and Spiramycin used as growth promoters in pig nutrition. Journal of Animal Science 49 , 846856.CrossRefGoogle Scholar
Visek, W (1978) The mode of growth promotion by antibiotics. Journal of Animal Science 46 , 14471469.CrossRefGoogle Scholar
Wächtershäuser, A & Stein, J (2000) Rationale for the luminal provision of butyrate in intestinal diseases. European Journal of Nutrition 39 , 164171.Google ScholarPubMed
Wang, L & Johnson, E (1992) Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Applied and Environmental Microbiology 58 , 624629.CrossRefGoogle ScholarPubMed
Wargovich, M, Eng, V & Newmark, H (1984) Calcium inhibits the damaging and compensatory proliferative effects of fatty acids on mouse colon epithelium. Cancer Letters 23 , 253258.CrossRefGoogle ScholarPubMed
Wiseman, J & Agunbiade, J (1998) The influence of changes in dietary fat and oils on fatty acid profiles of carcass fat in finishing pigs. Livestock Production Science 54 , 217227.CrossRefGoogle Scholar
Woolford, M (1975) Microbiological screening of the straight chain fatty acids (C1-C12) as potential silage additives. Journal of the Science of Food and Agriculture 26 , 219228.CrossRefGoogle ScholarPubMed