Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T12:03:52.818Z Has data issue: false hasContentIssue false

Biochemical Bases Needed for the Mathematical Representation of Whole Animal Metabolism

Published online by Cambridge University Press:  14 December 2007

M. Gill
Affiliation:
AFRC Institute for Grassland and Animal Production, Hurley, Maidenhead SL6 5LR.
D. E. Beever
Affiliation:
AFRC Institute for Grassland and Animal Production, Hurley, Maidenhead SL6 5LR.
J. France
Affiliation:
AFRC Institute for Grassland and Animal Production, Hurley, Maidenhead SL6 5LR.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1989

References

REFERENCES

Abramowitz, M. & Stegun, I. A. (editors) (1965). Handbook of Mathematical Functions. New York: Dover Publications.Google Scholar
Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock, 2nd ed. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Anon, . (1960). Editorial. Journal of the American Medical Association 174, 407408Google Scholar
Appanna, D. L., Grundy, B. J., Szczepan, E. W. & Viswanatha, T. (1984). Aerobactin synthesis in a cell-free system of Aerobacter aerogenes 62–1. Biochimica et Biophysica Acta 801, 437443.CrossRefGoogle Scholar
Atkinson, D. E. (1968). The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7, 40304034.CrossRefGoogle Scholar
Baldwin, R. L. & Bywater, A. C. (editors) (1984). Modelling Ruminant Digestion and Metabolism, Proceedings of the 2nd International Workshop. Davis, CA: University of California.Google Scholar
Baldwin, R. L., Crist, K., Waghorn, G. & Smith, N. E. (1981). The synthesis of models to describe metabolism and its integration. Proceedings of the Nutrition Society 40, 139145.CrossRefGoogle ScholarPubMed
Baldwin, R. L., France, J., Beever, D. E., Gill, M. & Thornley, J. H. M. (1987 a). Metabolism of the lactating cow. 3. Properties of mechanistic models suitable for evaluation of energetic relationships and factors involved in the partition of nutrients. Journal of Dairy Research 54, 133145.CrossRefGoogle Scholar
Baldwin, R. L., France, J. & Gill, M. (1987 b). Metabolism of the lactating cow. 1. Animal elements of a mechanistic model. Journal of Dairy Research 54, 77105.CrossRefGoogle ScholarPubMed
Baldwin, R. L. & Koong, L. J. (1980). Mathematical modelling in analyses of ruminant digestive function: philosophy, methodology and application: In Digestive Physiology and Metabolism in Ruminants, pp. 251268 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Baldwin, R. L., Koong, L. J. & Ulyatt, M. J. (1977). A dynamic model of ruminant digestion for evaluation of factors affecting nutritive value. Agricultural Systems 2, 255288CrossRefGoogle Scholar
Baldwin, R. L. & Smith, N. E. (1975). Molecular control of energy metabolism. In The Control of Metabolism, pp. 1734 [Sink, J. D., editor]. University Park, PA: Pennsylvania State University Press.Google Scholar
Baldwin, R. L., Smith, N. E., Taylor, J. & Sharp, M. (1980). Manipulating metabolic parameters to improve growth rate and milk secretion. Journal of Animal Science 51, 14161428CrossRefGoogle ScholarPubMed
Baldwin, R. L., Thornley, J. H. M. & Beever, D. E. (1987 c). Metabolism of the lactating cow. 2. Digestive elements of a mechanistic model. Journal of Dairy Research 54, 107131.CrossRefGoogle Scholar
Baldwin, R. L., Yang, Y. T., Crist, K. & Grichting, G. (1976). Theoretical model of ruminant adipose tissue metabolism in relation to the whole animal. Federation Proceedings 35, 23142318Google Scholar
Ballard, F. J., Hanson, R. W. & Kronfeld, D. S. (1969). Gluconeogenesis and lipogenesis in tissue from ruminants and nonruminants. Federation Proceedings 28, 218231.Google Scholar
Beever, D. E., Black, J. L. & Faichney, G. H. (19801981). Simulation of the effects of rumen function on the flow of nutrients from the stomach of sheep. 2. Assessment of computer predictions. Agricultural Systems 6, 221241.CrossRefGoogle Scholar
Beever, D. E., France, J. & Theodorou, M. K. (1986). Modelling of rumen function. In New Developments and Future Perspectives in Research on Rumen Function, pp. 109140 [Neimann-Sorenson, A., editor]. Brussels: EEC.Google Scholar
Bergman, E. N., Ider, Y. Z., Bowden, C. R. & Corbelli, C. (1979). Quantitative estimation of insulin sensitivity. American Journal of Physiology 236, E667E677.Google ScholarPubMed
Bergman, E. N. & Pell, J. M. (1984). Integration of amino acid metabolism in the rumen. In Herbivore Nutrition in the Subtropics and Tropics, pp. 613628 [Gilchrist, F. M. C. and Mackie, R. I., editors]. Craighall, South Africa: Science Press.Google Scholar
Black, A. L. & Bruss, M. L. (1975). Present concepts and future directions of research on the control of metabolism. In The Control of Metabolism, pp. 225252 [Sink, J. D., editor]. University Park, PA: Pennsylvania State University Press.Google Scholar
Black, J. L. (1984). The integration of data for prediction of feed intake, nutrient requirements and animal performance. In Herbivore Nutrition in Subtropics and Tropics, pp. 648671 [Gilchrist, F. M. C. and Mackie, R. J., editors]. Craighall, South Africa: Science Press.Google Scholar
Black, J. L., Beever, D. E., Faichney, G. J., Howarth, B. R. & Graham, N. McC. (19801981). Simulation of the effects of rumen function on the flow of nutrients from the stomach of sheep. 1. Descriptions of a computer programme. Agricultural Systems 6, 195219.CrossRefGoogle Scholar
Black, J. L., Campbell, R. G., Williams, I. H., James, K. J. & Davies, G. T. (1986). Simulation of energy and amino acid utilisation in the pig. Research and Development in Agriculture 3, 121145.Google Scholar
Brown, R. F. (1980). The identifiability of nonlinear compartmental models. In Identification and System Parameter Estimation, Proceedings of the 5th International Federation of Automatic Control Symposium, pp. 727734 [Isermann, R., editor]. Oxford: Pergamon Press.Google Scholar
Canolty, N. L. & Cain, T. P. (editors) (1985). Proceedings of the 1985 Conference on Mathematical Models in Experimental Nutrition. Athens, GA: University of Georgia Press.Google Scholar
Christensen, H. N. (1975). Biological Transport, 2nd ed. Reading, MA: W. A. Benjamin.Google Scholar
Christie, W. W. (editor) (1981). Lipid Metabolism in Ruminant Animals. Oxford: Pergamon Press.Google Scholar
Church, D. C. (1970). Digestive Physiology and Nutrition of Ruminants. vol. 1. Corvallis, OR: D. C. Church.Google Scholar
Corbelli, C. & Mari, A. (1983). Validation of mathematical models of complex endocrine-metabolic systems: a case study on a model of glucose regulation. Medical and Biological Engineering and Computing 21, 390399.CrossRefGoogle Scholar
Corbelli, C., Pacini, G. & Salvan, A. (1980). On a simple model of insulin secretion. Medical and Biological Engineering and Computing 18, 457463.CrossRefGoogle Scholar
Crabtree, B. & Newsholme, E. A. (1987). The derivation and interpretation of control coefficients. Biochemical Journal 247, 113120.CrossRefGoogle ScholarPubMed
Dawson, J. M., Buttery, P. J., Beever, D. E. & Gill, M. (1989). Effect of carcass manipulation on muscle collagen. Animal Production 48, 657 Abstr.Google Scholar
Draper, N. R. & Smith, H. (1981). Applied Regression Analysis, 2nd ed. New York: John Wiley & Sons.Google Scholar
Fioramonti, J. & Bueno, L. (1988). Hormonal control of gut motility in ruminants and non-ruminants and its nutritional implications. Nutrition Research Reviews 1, 169188CrossRefGoogle ScholarPubMed
France, J., Gill, M., Thornley, J. H. M. & England, P. (1987). A model of nutrient utilization and body composition in beef cattle. Animal Production 44, 371386.Google Scholar
France, J. & Thornley, J. H. M. (1984). Mathematical Models in Agriculture. London: Butterworths.Google Scholar
Garfinkel, D. & Heinmets, F. (1969). Application of computers to the study of protein metabolism. In Mammalian Protein Metabolism, vol. 3, pp. 263324. [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle Scholar
Garlick, P. J. (1980). Protein turnover in the whole animal and specific tissues. In Protein Metabolism, Part 2. Comprehensive Biochemistry vol. 19B, pp. 77152 [Neuberger, A. and Vandeenen, L. L. M., editors]. Amsterdam: Elsevier Publishing Co.Google Scholar
Gill, M. (1984). Modelling the partition of nutrients for growth. In Modeling Ruminant Digestion and Metabolism, Proceedings of the 2nd International Workshop, pp. 7579 [Baldwin, R. L. and Bywater, A. C., editors]. Davis, CA: University of California Press.Google Scholar
Gill, M. (1986). Dynamic models: their use in understanding and predicting nutrient response. Proceedings of the Nutrition Society 45, 221229.CrossRefGoogle ScholarPubMed
Gill, M., France, J., Summers, M., McBride, B. W. & Milligan, L. P. (1989 a). Mathematical integration of protein metabolism in growing lambs. Journal of Nutrition (In the Press).CrossRefGoogle ScholarPubMed
Gill, M., France, J., Summers, M., McBride, B. W. & Milligan, L. P. (1989 b). Simulation of the energy costs associated with protein turnover and Na+, K+-transport in growing lambs. Journal of Nutrition 119 (In the Press).CrossRefGoogle ScholarPubMed
Gill, M., Thornley, J. H. M., Black, J. L., Oldham, J. D. & Beever, D. E. (1984). Simulation of the metabolism of absorbed energy-yielding nutrients in young sheep. British Journal of Nutrition 52, 621649.CrossRefGoogle Scholar
Graham, N. McC., Black, J. L., Faichney, G. J. & Arnold, G. W. (1976). Simulation of growth and production in sheep. Model 1. A computer program to estimate energy and nitrogen utilisation, body composition and empty liveweight change day by day for sheep of any age. Agricultural Systems 1, 113138CrossRefGoogle Scholar
Greco, W. R (1986). The role of simulation in biomathematical modeling. Bulletin of Mathematical Biology 48, 241251.CrossRefGoogle ScholarPubMed
Groen, A. K., Van der Meer, R., Westerhoff, H. V., Wanders, R. J. A., Akerboom, T. P. M. & Tager, J. M (1982). Control of metabolic fluxes. In Metabolic Compartmentation, pp. 937 [Sies, H., editor]. London: Academic Press.Google Scholar
Heidegar, W. J. & Ferguson, M. E. (1985). A theoretical model for calcium absorption from the intestinal rumen. Journal of Theoretical Biology 114, 657664.CrossRefGoogle Scholar
Heinrich, R., Rapoport, S. M. & Rapoport, T. A. (1977). Metabolic regulation and mathematical models. Progress in Biophysics and Molecular Biology 32, 182.CrossRefGoogle ScholarPubMed
Higgins, J. J. (1965). Dynamics and control in cellular reactions. In Control of Energy Metabolism, pp. 1346 [Chance, B., Estabrook, R. W. and Williamson, J. R., editors]. New York: Academic Press.CrossRefGoogle Scholar
Kacser, H. & Burns, J. A. (1973). The control of flux. In Rate Control of Biological Processes. Symposium of Society for Experimental Biology no. 27, pp. 65104. Cambridge: Cambridge University Press.Google Scholar
Kootsey, J. M. (1986). Future directions in computer simulation. Bulletin of Mathematical Biology 48, 405415.CrossRefGoogle ScholarPubMed
Lewis, A. J. & Speer, V. C. (1973). Lysine requirement of the lactating sow. Journal of Animal Science 37, 104110.CrossRefGoogle ScholarPubMed
Licko, V. (1973). Threshold secretory mechanism: a model of derivative element in biological control. Bulletin of Mathematical Biology 35, 5158CrossRefGoogle Scholar
Lindsay, D. B. (1983). Growth and fattening. In Nutritional Physiology of Farm Animals pp. 261313. [Rook, J. A. F. and Thomas, P. C., editors]. London: Longman.Google Scholar
Lister, D. (1989). Muscle metabolism and animal physiology in the dark cutting condition. In Dark Cutting in Cattle and Sheep, Proceedings of an Australian Workshop, pp. 1925. (Fabiansson, S. U., Shorthose, W. R. and Warner, R. D., editors). Sydney: Meat and Livestock Research and Development Corporation, Report 89/2.Google Scholar
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). Whole body and tissue protein synthesis in cattle. British Journal of Nutrition 43, 491502.CrossRefGoogle ScholarPubMed
Longland, A. C., Close, W. H. & Low, A. G. (1989). The role of the large intestine in influencing the use of fibrous feeds by pigs. In Energy Metabolism of Farm Animals, Proceedings of the 11th Symposium, European Association of Animal Production Publication no. 43, pp. 111114. [van der Honing, Y. & Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Lunn, P. G., Whitehead, R. G. & Baker, B. A. (1976). The relative effects of a low-protein high-carbohydrate diet on the free amino acid composition of liver and muscle. British Journal of Nutrition 36, 219230.CrossRefGoogle ScholarPubMed
McAllan, A. B., Cockburn, J. E., Williams, A. P. & Smith, R. H. (1988). The degradation of different protein supplements in the rumen of steers and the effects of these supplements on carbohydrate digestion. British Journal of Nutrition 60, 669682.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochemical Journal 178, 373379.CrossRefGoogle ScholarPubMed
MacRae, J. C. & Lobley, G. E. (1982). Some factors which influence thermal energy losses during the metabolism of ruminants. Livestock Production Science 9, 447456.CrossRefGoogle Scholar
Mahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed. New York: Harper and Row.Google Scholar
Mercer, L. P., Flodin, N. W. & Morgan, P. H. (1978). New methods for comparing the biological efficiency of alternate nutrient sources. Journal of Nutrition 108, 12441249.CrossRefGoogle ScholarPubMed
Milhorn, H. T. (1975). The special challenge of biological control systems. In The Control of Metabolism, pp. 211224 [Sink, J. D., editor]. University Park, PA: Pennsylvania State University Press.Google Scholar
Milligan, L. P. (1971). Energetic efficiency and metabolic transformations. Federation Proceedings 30, 14541458Google ScholarPubMed
Mogenson, G. J. & Calaresu, F. R. (1978). Food intake considered from the viewpoint of systems analysis. In Hunger Models, pp. 124 [Booth, D. A., editor]. London: Academic Press.Google Scholar
Moughan, P. J. & Smith, W. C. (1984). Prediction of dietary protein quality based on a model of the digestion and metabolism of nitrogen in the growing pig. New Zealand Journal of Agricultural Research 27, 501507.CrossRefGoogle Scholar
Murphy, M. R. (1984). Modelling production of volatile fatty acid in ruminants. In Modeling Ruminant Digestion and Metabolism, Proceedings of the 2nd International Workshop, pp. 59-62 [Baldwin, R. L. and Bywater, A. C., editors]. Davis, CA: University of California.Google Scholar
Newsholme, E. A. & Start, C. (1973). Regulation in Metabolism. Chichester: John Wiley & Sons.Google Scholar
Oldham, J. D. & Emmans, G. C. (1988). Prediction of responses to protein and energy yielding nutrients. In Nutrition and Lactation in the Dairy Cow, pp. 7696 [Garnsworthy, P. C., editor]. London: Butterworths.CrossRefGoogle Scholar
Oltjen, J. W., Bywater, A. C., Baldwin, R. L. & Garrett, W. N. (1986). Development of a dynamic model of beef cattle growth and composition. Journal of Animal Science 62, 8697.CrossRefGoogle Scholar
Pettigrew, J. E., Gill, M., France, J. & Close, W. H. (1989). A mathematical model of sow energy and protein metabolism. In Energy Metabolism of Farm Animals, Proceedings of the 11th Symposium, European Association of Animal Production Publication no. 43, pp. 119201 [van der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Pirt, S. J. (1975). Principles of Microbe and Cell Cultivation. Oxford: Blackwell Scientific Publications.Google Scholar
Reeds, P. J., Fuller, M. F. & Nicholson, B. A. (1985). Metabolic basis of energy expenditure with particular reference to protein. In Substrate and Energy Metabolism in Man, pp. 4657 [Garrow, J. S. and Halliday, W., editors]. London: CRC.Google Scholar
Reeds, P. J., Nicholson, B. A. & Fuller, M. F. (1987). Contribution of protein synthesis to energy expenditure in vivo and in vitro. In Energy Metabolism of Farm animals, Proceedings of the 11th Symposium, European Association of Animal Production Publication no. 32, pp. 69 [Moe, P. W., Tyrrell, H. F. and Reynolds, P. J., editors]. Totowa, N.J.: Rowman & Littlefield.Google Scholar
Reich, J. G. & Sel'kov, E. E. (1982). Energy Metabolism of the Cell: a Theoretical Treatise. New York: Academic Press.Google Scholar
Reynolds, C. K. & Tyrrell, H. F. (1989). Effects of forage to concentrate ratio and intake on visceral tissue and whole body energy metabolism of growing beef heifers. In Energy Metabolism of Farm Animals, Proceedings of 11th Symposium, pp. 151154. [van der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Riggs, D. S. (1963). The Mathematical Approach to Physiological Problems. Cambridge, MA: MIT.Google Scholar
Schulz, A. R. (1978). Simulation of energy metabolism in the simple-stomached animal. British Journal of Nutrition 39, 235254.CrossRefGoogle ScholarPubMed
Segel, I. H. (1975). Enzyme Kinetics. New York: John Wiley & Sons.Google Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for In Vivo Kinetics. New York: Academic Press.Google Scholar
Siems, W., Dubiel, W., Dumdey, R., Muller, M. & Rapoport, S. M. (1984). Accounting for the ATP-consuming processes in rabbit reticulocytes. European Journal of Biochemistry 134, 101107.CrossRefGoogle Scholar
Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society 106, 467482.Google Scholar
Smith, N. E. (1970). Modelling studies of ruminant metabolism. PhD Thesis, University of California.Google Scholar
Stein, W. D. (1986). Transport and Diffusion Across Cell Membranes. Orlando, FL: Academic Press.Google Scholar
Summers, M., McBride, B. W. & Milligan, L. P. (1988). Components of basal energy expenditure. In Aspects of Digestive Physiology in Ruminants, pp. 257286 [Dobson, A. and Dobson, M. J., editors]. Ithaca, NY: Comstock Publishing Associates.Google Scholar
Ulyatt, M. J., Waghorn, G. C., John, A., Reid, C. S. W. & Monro, J. (1984). Effect of intake and feeding frequency on feeding behaviour and quantitative aspects of digestion in sheep fed chaffed lucerne hay. Journal of Agricultural Science 102, 645657.CrossRefGoogle Scholar
Waghorn, G. C. & Baldwin, R. L. (1984). Model of metabolite flux within mammary gland of the lactating cow. Journal of Dairy Science 67, 531544.CrossRefGoogle ScholarPubMed
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland.Google Scholar
Whittemore, C. T. & Fawcett, R. H. (1976). Theoretical aspects of a flexible model to simulate protein and lipid growth in pigs. Animal Production 22, 8796.Google Scholar
Yang, Y. T. & Baldwin, R. L. (1973). Lipolysis in isolated cow adipose cells. Journal of Dairy Science 56, 366374.CrossRefGoogle ScholarPubMed
Young, V. R. (1980). Hormonal control of protein metabolism, with particular reference to body protein gain. In Protein Deposition in Animals, pp. 167191. [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar