Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T20:43:55.795Z Has data issue: false hasContentIssue false

An Appraisal of the Adequacy of Dietary Mineral Intakes in Developing Countries for Bone Growth and Development in Children

Published online by Cambridge University Press:  14 December 2007

Ann Prentice
Affiliation:
MRC Dunn Nutrition Unit, Cambridge, UK, and Keneba, The Gambia
Christopher J. Bates
Affiliation:
MRC Dunn Nutrition Unit, Cambridge, UK, and Keneba, The Gambia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Adams, P. & Berridge, F. R. (1969). Effects of kwashiorkor on cortical and trabecular bone. Archives of Disease in Childhood 44, 705709.CrossRefGoogle ScholarPubMed
Aggett, P. J. (1988). Severe zinc deficiency. In Zinc in Human Biology, pp. 259279 [Mills, C. F., editor]. Berlin: Springer-Verlag.Google Scholar
Allen, L. H. (1982). Calcium bioavailability and absorption: a review. American Journal of Clinical Nutrition 35, 783808.Google Scholar
Anderson, B. M., Gibson, R. S. & Sabry, J. H. (1981). The iron and zinc status of long-term vegetarian women. American Journal of Clinical Nutrition 34, 10421048.CrossRefGoogle ScholarPubMed
Anderson, M. P., Hunt, R. D., Griffiths, H. J., McIntyre, K. W. & Zimmerman, R. E. (1977). Long-term effect of low dietary calcium:phosphate ration on the skeleton of Cebus albifrons monkeys. Journal of Nutrition 107. 834839.Google Scholar
Aykroyd, W. R. & Krishnan, B. G. (1938). Effect of calcium lactate on children in a nursery school. Lancet ii, 153155.Google Scholar
Aykroyd, W. R. & Krishnan, B. G. (1939). A further experiment on the value of calcium lactate for Indian children. Indian Journal of Medical Research 27, 409412.Google Scholar
Aykroyd, W. R., Krishnan, B. G. & Madhava, K. B. (1937). The effect of skimmed milk, soya bean, and other foods in supplementing typical Indian diets. Indian Journal of Medical Research 24, 10931115.Google Scholar
Bansal, P., Rau, P., Venkatachalam, P. S. & Gopalan, C. (1964). Effect of calcium supplementation on children in a rural community. Indian Journal of Medical Research 52, 219223.Google Scholar
Bates, C. J., Evans, P. H., Dardenne, M., Prentice, A., Lunn, P. G., Northrop-Clewes, C. A., Hoare, S., Cole, T. J., Horan, S. J., Longman, S. C., Stirling, D. & Aggett, P. J. (1993). A trial of zinc supplementation in young rural Gambian children. British Journal of Nutrition 69, 243255.CrossRefGoogle ScholarPubMed
Bates, C. J. & Tsuchiya, H. (1990). Zinc in breast milk during prolonged lactation: comparison between the UK and The Gambia. European Journal of Clinical Nutrition 44, 6169.Google ScholarPubMed
Begum, A. & Pereira, S. M. (1969). Calcium balance studies on children accustomed to low calcium intakes. British Journal of Nutrition 23, 905911.Google Scholar
Behrens, R. H., Tomkins, A. M. & Roy, S. K. (1990). Zinc supplementation during diarrhoea, a fortification against malnutrition? Lancet 336, 442443.Google Scholar
Bhaskaram, C. & Reddy, V. (1979). Role of dietary phytate in the aetiology of nutritional rickets. Indian Journal of Medical Research 69, 265270.Google ScholarPubMed
Bindra, G. S., Gibson, R. S. & Thompson, L. U. (1986). [Phytate]/[calcium]/[zinc] ratios in Asian immigrant lactovo vegetarian diets and their relationship to zinc nutriture. Nutrition Research 6, 475483.Google Scholar
Bishop, N. (1989). Bone disease in preterm infants. Archives of Disease in Childhood 64, 14031409.CrossRefGoogle ScholarPubMed
British Nutrition Foundation. (1989). Calcium. London: The British Nutrition Foundation.Google Scholar
Bronner, F., Harris, R. S., Maletskos, C. J. & Benda, C. E. (1954). Studies in calcium metabolism. Effect of food phytates on calcium45 uptake in children on low-calcium breakfasts. Journal of Nutrition 54, 523542.Google Scholar
Bronner, F., Harris, R. S., Maletskos, C. J. & Benda, C. E. (1956). Studies in calcium metabolism. Effect of food phytates on calcium45 uptake in boys on a moderate calcium breakfast. Journal of Nutrition 59, 393406.Google Scholar
Carter, J. P., Grivetti, L. E., Davis, J. T., Nasiff, S., Mansour, A., Mousa, W. A., Atta, A., Patwardhan, V. N., Abdel Moneim, M., Abdou, I. A. & Darby, W. J. (1969). Growth and sexual development of adolescent Egyptian village boys. Effects of zinc, iron and placebo supplementation. American Journal of Clinical Nutrition 22, 5978.CrossRefGoogle ScholarPubMed
Castillo-Duran, C., Heresi, G., Fisberg, M. & Uauy, R. (1987). Controlled trial of zinc supplementation during recovery from malnutrition: effects on growth and immune function. American Journal of Clinical Nutrition 45, 602608.CrossRefGoogle ScholarPubMed
Cerqueira, M. T., McMurry, Fry M. & Connor, W. E. (1979). The food and nutrient intakes of the Tarahumara Indians of Mexico. American Journal of Clinical Nutrition 32, 905915.Google Scholar
Chase, H. P., Hambidge, K. M., Barnett, S. E., Houts-Jacobs, M. J., Lenz, K. & Gillespie, J. (1980). Low vitamin A and zinc concentrations in Mexican-American migrant children with growth retardation. American Journal of Clinical Nutrition 33, 23462349.Google Scholar
Chen, X.-C., Yin, T.-A., He, J.-S., Ma, Q.-Y., Han, Z.-M. & Li, L.-X. (1985). Low levels of zinc in hair and blood, pica, anorexia and poor growth in Chinese preschool children. American Journal of Clinical Nutrition 42, 694700.CrossRefGoogle ScholarPubMed
Chusilp, K., Somnasang, P., Kirdpon, W., Wongkham, S., Sribonlue, P., Mahaverawat, U., Yongvanit, P., Sawakontha, S. & Waterlow, J. (1992). Observations on the development of stunting in children of the Khon Kaen region of Thailand. European Journal of Clinical Nutrition 46, 475487.Google Scholar
Clements, M. R., Johnson, L. & Fraser, D. R. (1987). A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature 325, 6265.CrossRefGoogle ScholarPubMed
Cohn, S. H., Abesamis, C., Zanzi, I., Aloia, J. F., Yasumura, S. & Ellis, K. J. (1977). Body elemental composition: comparison between black and white adults. American Journal of Physiology 232, E419E422.Google Scholar
Creed, de Kanashiro H., Brown, K. H., Lopez de Romaña, G., Lopez, T. & Black, R. E. (1990). Consumption of food and nutrients by infants in Huascar (Lima), Peru. American Journal of Clinical Nutrition 52, 9951004.Google Scholar
Dagnelie, P. C., Vergote, F. J. V. R. A., van Staveren, W. A., van den Berg, H., Dingjan, P. G. & Hautvast, J. G. A. J. (1990). High prevalence of rickets in infants on macrobiotic diets. American Journal of Clinical Nutrition 51, 202208.CrossRefGoogle ScholarPubMed
Department of Health (1989). The Diets of British Schoolchildren (Report on Health and Social Subjects No. 36). London: Her Majesty's Stationery Office.Google Scholar
Department of Health (1991). Dietary Reference Values for Food Energy and Nutrients for the United Kingdom (Report on Health and Social Subjects No. 41). London: Her Majesty's Stationery Office.Google Scholar
Dirren, H., Barclay, D., Gil Ramos, J., Montalvo, M.-M. & Lozano, R. (1993). Zinc supplementation and infant growth in Ecuador. In Nutrient Regulation during Pregnancy, Lactation and Infant Growth. New York: Plenum Press (In the Press).Google Scholar
Eyberg, C. J., Pettifor, J. M. & Moodley, G. (1986). Dietary calcium intake in rural black South African children. The relationship between calcium intake and calcium nutritional status. Human Nutrition: Clinical Nutrition 40C, 6974.Google Scholar
Ferguson, E. L., Gibson, R. S., Thompson, L. U. & Ounpuu, S. (1989). Dietary calcium, phytate, and zinc intakes and the calcium, phytate, and zinc molar ratios of the diets of a selected group of East African children. American Journal of Clinical Nutrition 50, 14501456.CrossRefGoogle ScholarPubMed
Fomon, S. J. (1974). Infant Nutrition, 2nd edn. Philadelphia, PA: W. B. Saunders.Google Scholar
Fraser, D. R. (1988 a). Bone minerals and fat-soluble vitamins. In Comparative Nutrition, pp. 105116 [Blaxter, K. and MacDonald, I., editor]. London: John Libbey.Google Scholar
Fraser, D. R. (1988 b). Nutritional growth retardation: experimental studies with special reference to calcium. In Linear Growth Retardation in Less Developed Countries (Nestlé Nutrition Workshop Series Vol. 14). pp. 127141 [Waterlow, J. C., editor]. New York: Raven Press.Google Scholar
Fraser, D. R. (1991). Physiology of vitamin D and calcium homeostasis. In Rickets (Nestlé Nutrition Workshop Series Vol. 21). pp 2334 [Glorieux, F. H., editor]. New York: Raven Press.Google Scholar
Garn, S. M., Rohmann, C. G., Behar, M., Viteri, F. & Guzman, M. A. (1964). Compact bone deficiency in protein-caloried malnutrition. Science 145, 14441445.Google Scholar
Gatheru, Z., Kinoti, S., Alwar, J. & Mwita, M. (1988). Serum zinc levels in children with kwashiorkor aged one to three years at Kenyatta National Hospital and the effect of zinc supplementation during recovery. East African Medical Journal 65, 670679.Google Scholar
Gibson, R. S., Heywood, A., Yaman, C., Sohlström, A., Thompson, L. U. & Heywood, P. (1991). Growth in children from the Wosera subdistrict. Papua New Guinea, in relation to energy and protein intakes and zinc status. American Journal of Clinical Nutrition 53, 782789.Google Scholar
Gibson, R. S., Vanderkooy, P. D. S., MacDonald, A. C., Goldman, A., Ryan, B. A. & Berry, M. (1989). A growth-limiting, mild zinc-deficiency syndrome in some Southern Ontario boys with low height percentiles. American Journal of Clinical Nutrition 49, 12661273.CrossRefGoogle ScholarPubMed
Golden, B. E. & Golden, M. H. N. (1979). Plasma zinc and the clinical features of malnutrition. American Journal of Clinical Nutrition 32, 24902494.Google Scholar
Golden, M. H. N. & Golden, B. E. (1981). Effect of zinc supplementation on the dietary intake, rate of weight gain, and energy cost of tissue deposition in children recovering from severe malnutrition. American Journal of Clinical Nutrition 34, 900908.CrossRefGoogle ScholarPubMed
Golden, B. E. & Golden, M. H. (1992). Effect of zinc on lean tissue synthesis during recovery from malnutrition. European Journal of Clinical Nutrition 46, 697706.Google ScholarPubMed
Golden, M. H., (1988). The role of individual nutrient deficiencies in growth retardation of children as exemplified by zinc and protein. In Linear Growth Retardation in Less Developed Countries. (Nestlé Nutrition Workshop Series Vol. 14). pp. 143163 [Waterlow, J. C., editor]. New York: Raven Press.Google Scholar
Golden, M. H., Golden, B. E., Harland, P. S. E. G. & Jackson, A. A. (1978). Zinc and immunocompetence in protein-energy malnutrition. Lancet i, 12261227.Google Scholar
Golub, M. S., Gershwin, M. E., Hurley, L. S., Saito, W. Y. & Hendrickx, A. G. (1984). Studies of marginal zinc deprivation in rhesus monkeys. IV. Growth of infants in the first year. American Journal of Clinical Nutrition 40, 11921202.Google Scholar
Hambidge, K. M., Chavez, M. N., Brown, R. M. & Walravens, P. A. (1979). Zinc nutritional status of young middle-income children and effects of consuming zinc-fortified breakfast cereals. American Journal of Clinical Nutrition 32, 25322539.CrossRefGoogle ScholarPubMed
Hegsted, D. M., Moscoso, I. & Collazos, C. (1952). A study of the minimum calcium requirements of adult men. Journal of Nutrition 46, 181201.Google Scholar
Irving, J. T. (1964). Dynamics and function of phosphorus. In Mineral Metabolism, Vol. 2A, pp. 249313 [Comar, C. L. and Bronner, F., editor]. New York: Academic Press.Google Scholar
Kanis, J. A. & Passmore, R. (1989). Calcium supplementation of the diet. I. British Medical Journal 298, 137140.Google Scholar
Keller, W. (1988). The epidemiology of stunting. In Linear Growth Retardation in Less Developed Countries (Nestlé Nutrition Workshop Series Vol. 14), pp. 1739 [Waterlow, J. C., editor]. New York: Raven Press.Google Scholar
King, J. C. & Turnlund, J. R. (1988). Human zinc requirements. In Zinc in Human Biology, pp. 335350. [Mills, C. F., editor]. Berlin: Springer-Verlag.Google Scholar
Kooh, S. W., Fraser, D., Reilly, B. J., Hamilton, J. R., Gall, D. G. & Bell, L. (1977). Rickets due to calcium deficiency. New England Journal of Medicine 297, 12641266.CrossRefGoogle ScholarPubMed
Krebs, N. F. & Hambidge, K. M. (1986). Zinc requirements and zinc intakes of breast-fed infants. American Journal of Clinical Nutrition 43, 288292.CrossRefGoogle ScholarPubMed
Krebs, N. F., Hambidge, K. M., Jacobs, M. A. & Rasbach, J. O. (1985). The effects of a dietary zinc supplement during lactation on longitudinal changes in maternal zinc status and milk zinc concentrations. American Journal of Clinical Nutrition 41, 560570.CrossRefGoogle ScholarPubMed
Krebs, N. F., Hambidge, K. M. & Walravens, P. A. (1984). Increased food intake of young children receiving a zinc supplement. American Journal of Diseases of Children 138, 270273.Google ScholarPubMed
Laskey, M. A., Prentice, A., Shaw, J., Zachou, T. & Ceesay, S. M. (1990). Breast-milk calcium concentrations during prolonged lactation in British and rural Gambian mothers. Acta Paediatrica Scandinavica 79, 507512.Google Scholar
Lawson, D. E. M., Cole, T. J., Salem, S. I., Galal, O. M., El-Meligy, R., Abdel-Azim, S., Paul, A. A. & El-Husseini, S. (1987). Actiology of rickets in Egyptian children. Human Nutrition: Clinical Nutrition 41C, 199208.Google Scholar
Leek, J. C., Vogler, J. B., Gershwin, M. E., Golub, M. S., Hurley, L. S. & Hendrickx, A. G. (1984). Studies of marginal zinc deprivation in rhesus monkeys. V. Fetal and infant skeletal effects. American Journal of Clinical Nutrition 40, 12031212.Google Scholar
Leek, J. C., Keen, C. L., Vogler, J. B., Golub, M. S., Hurley, L. S., Hendrickx, A. G. & Gershwin, M. E. (1988). Long-term marginal zinc deprivation in rhesus monkeys. IV. Effects on skeletal growth and mineralization. American Journal of Clinical Nutrition 47, 889895.CrossRefGoogle ScholarPubMed
Leitch, I. & Aitken, F. C. (1959). The estimation of calcium requirement: a re-examination. Nutrition Abstracts and Reviews 29, 393411.Google Scholar
Linhares, E. D. R., Round, J. M. & Jones, D. A. (1986). Growth, bone maturation, and biochemical changes in Brazilian children from two different socioeconomic groups. American Journal of Clinical Nutrition 44, 552558.Google Scholar
Lo, C., Jarjou, L., Poppitt, S., Cole, T. J. & Prentice, A. (1990). Delayed development of peak bone mass in West African adolescents. In Osteoporosis 1990, Vol 1, pp. 7377 [Christiansen, C. and Overgaard, K., editors]. Aalborg, Denmark: Handelstrykkeriet Aalborg Aps.Google Scholar
Luyken, R. & Luyken-Koning, F. W. (1961). Studies on the physiology of nutrition in Surinam. VIII. Metabolism of calcium. Tropical and Geographical Medicine 13, 4654.Google Scholar
Luyken, R. & Luyken-Koning, F. W. (1969). Studies on physiology of nutrition in Surinam. XII. Nutrition and development of muscular, skeletal, and adipose tissues in Surinam children. American Journal of Clinical Nutrition 22, 519526.Google Scholar
Luyken, R., Luyken-Koning, F. W., Cambridge, T. H., Dohle, T. & Bosch, R. (1967). Studies on physiology of nutrition in Surinam. X. Protein metabolism and influence of extra calcium on the growth of and calcium metabolism in boarding school children. American Journal of Clinical Nutrition 20, 3442.CrossRefGoogle ScholarPubMed
Malan, A. I. & Ockerse, T. (1941). The effect of the calcium and phosphorus intake of school children upon dental caries, body weights and heights. South African Dental Journal 15, 153158.Google Scholar
Maltz, H. E., Fish, M. B. & Holliday, M. A. (1970). Calcium deficiency rickets and the renal response to calcium infusion. Pediatrics 46, 865870.Google Scholar
Marie, P. J., Pettifor, J. M., Ross, F. P. & Glorieux, F. H. (1982). Histological osteomalacia due to dietary calcium deficiency in children. New England Journal of Medicine 307, 584588.Google Scholar
Mitchell, H. H., Hamilton, T. S., Steggerda, F. R. & Bean, H. W. (1945). The chemical composition of the adult human body and its bearing on the biochemistry of growth. Journal of Biological Chemistry 158, 625637.Google Scholar
Moore, T., Impey, S. G., Martin, P. E. & Symonds, K. R. (1963). Meat diets. II. Effect of the age of rats on their ability to withstand the low calcium intake induced by a diet of minced beef. Journal of Nutrition 80, 162170.Google Scholar
Murphy, S. P., Beaton, G. H. & Calloway, D. H. (1992). Estimated mineral intakes of toddlers: predicted prevalence of inadequacy in village populations in Egypt, Kenya, and Mexico. American Journal of Clinical Nutrition 56, 565572.Google Scholar
Nicholls, L. & Nimalasuriya, A. (1939). Adaptation to a low calcium intake in reference to the calcium requirements of a tropical population. Journal of Nutrition 18, 563577.CrossRefGoogle Scholar
O'Dell, B. L. & Reeves, P. O. (1988). Zinc status and food intake. In Zinc in Human Biology, pp. 173181 [Mills, C. F., editor]. Berlin: Springer-Verlag.Google Scholar
Oppé, T. E. & Redstone, D. (1968). Calcium and phosphorus levels in healthy newborn infants given various types of milk. Lancet i, 10451048.Google Scholar
Ornoy, A., Wolinsky, I. & Guggenheim, K. (1974). Structure of long bones of rats and mice fed a low calcium diet. Calcified Tissue Research 15, 7176.Google Scholar
Pettifor, J. M. (1991). Dietary calcium deficiency. In Rickets (Nestlé Nutrition Workshop Series Vol. 21), pp. 123143 [Glorieux, F. H., editor]. New York: Raven Press.Google Scholar
Pettifor, J. M., Marie, P. J., Sly, M. R., du Bruyn, D. B., Ross, F., Isdale, J. M., de Klerk, W. A. & van der Walt, W. H. (1984). The effect of differing dietary calcium and phosphorus contents on mineral metabolism and bone histomorphometry in young vitamin D-replete baboons. Calcified Tissue International 36, 668676.Google Scholar
Pettifor, J. M., Ross, P., Moodley, G. & Shuenyane, E. (1979). Calcium deficiency in rural black children in South Africa a comparison between rural and urban communities. American Journal of Clinical Nutrition 32, 24772483.Google Scholar
Pettifor, J. M., Ross, P., Moodley, G. & Shuenyane, E. (1981 b). The effect of dietary calcium supplementation on serum calcium, phosphorus, and alkaline phosphatase concentrations in a rural black population. American Journal of Clinical Nutrition 34, 21872191.Google Scholar
Pettifor, J. M., Ross, P., Travers, R., Glorieux, F. H. & Deluca, H. F. (1981 a). Dietary calcium deficiency: a syndrome associated with bone deformities and elevated serum 1.25-dihydroxyvitamin D concentrations. Metabolic Bone Diseases and Related Research 2, 301305.Google Scholar
Pettifor, J. M., Ross, P., Wang, J., Moodley, G. & Couper-Smith, J. (1978). Rickets in children of rural origin in South Africa: is low dietary calcium a factor? Journal of Pediatrics 92, 320324.Google Scholar
Prentice, A. (1991). Functional significance of marginal calcium deficiency. In Modern Lifestyles, Lower Energy Intake and Micronutrient Status. pp. 139154 [Peitrzik, K., editor]. London: Springer-Verlag.Google Scholar
Prentice, A., Laskey, M. A., Shaw, J., Cole, T. J. & Fraser, D. R. (1990). Bone mineral content of Gambian and British children aged 0–36 months. Bone and Mineral 10, 211224.Google Scholar
Prentice, A., Laskey, M. A., Shaw, J., Hudson, G., Day, K., Jarjou, L. M., Dibba, B. & Paul, A. A. (1993). The calcium and phosphorus intakes of rural Gambian women during pregnancy and lactation. British Journal of Nutrition 69, 885896.Google Scholar
Prentice, A. & Paul, A. (1990). Contribution of breast-milk to nutrition during prolonged breast-feeding. In Human Lactation. 4, Breast-feeding, Nutrition, Infections and Infant Growth, pp. 87102 [Atkinson, S., Hanson, L. and Chandra, R., editor]. St John's: ARTS Biomedical Publishers.Google Scholar
Prentice, A. M., Paul, A. A., Prentice, A., Black, A. E., Cole, T. J. & Whitehead, R. G. (1986). Cross-cultural differences in lactational performance. In Human Lactation. 2. Maternal and Environmental Factors. pp. 1344 [Hamosh, M. and Goldman, A. S., editor]. New York: Plenum Press.CrossRefGoogle Scholar
Rajalakshmi, R., Sail, S. S., Shah, D. G. & Ambady, S. K. (1973). The effects of supplements varying in carotene and calcium content on the physical, biochemical and skeletal status of preschool children. British Journal of Nutrition 30, 7786.CrossRefGoogle ScholarPubMed
Ronaghy, H., Reinhold, J. G., Mahloudji, M., Ghavami, P., Spivey Fox, M. R. & Halsted, J. A. (1974). Zinc supplementation of malnourished schoolboys in Iran: increased growth and other effects. American Journal of Clinical Nutrition 27, 112121.Google Scholar
Ronaghy, H., Spivey Fox, M. R., Garn, S. M., Israel, H., Harp, A., Moe, P. G., & Halsted, J. A. (1969). Controlled zinc supplementation for malnourished school boys: a pilot experiment. American Journal of Clinical Nutrition 22, 12791289.Google Scholar
Russell, R. G., Caswell, A. M., Hearn, P. R. & Sharrard, R. M. (1986). Calcium in mineralized tissues and pathological calcification. British Medical Bulletin 42, 435446.CrossRefGoogle ScholarPubMed
Sandstead, H. H. (1985). Requirement of zinc in human subjects. Journal of the American College of Nutrition 4, 7382.CrossRefGoogle ScholarPubMed
Sandstead, H. H. (1991). Zinc deficiency. A public health problem? American Journal of Diseases of Children 145, 853859.CrossRefGoogle ScholarPubMed
Sandström, B., Cederblad, Å., Kivistö, B., Stenquist, B. & Andersson, H. (1986). Retention of zinc and calcium from the human colon. American Journal of Clinical Nutrition 44, 501504.CrossRefGoogle ScholarPubMed
Schlesinger, L., Arevalo, M., Arredondo, S., Diaz, M., Lönnerdal, B. & Stekel, A. (1992). Effect of a zinc-fortified formula on immunocompetence and growth of malnourished infants. American Journal of Clinical Nutrition 56, 491498.Google Scholar
Schwartz, R. (1990). Magnesium metabolism. In Nutrition and Bone Development, pp. 148163 [Simmons, D. J., editor]. Oxford: Oxford University Press.Google Scholar
Simmer, K., Khanum, S., Carlsson, L. & Thompson, R. P. H. (1988). Nutritional rehabilitation in Bangladesh-the importance of zinc. American Journal of Clinical Nutrition 47, 10361040.Google Scholar
Smith, R. M., King, R. A., Spargo, R. M., Cheek, D. B., Field, J. B. & Veitch, L. G. (1985). Growth-retarded aboriginal children with low plasma zinc levels do not show a growth response to supplementary zinc. Lancet i, 923924.CrossRefGoogle Scholar
Solomons, N. W. & Jacob, R. A. (1981). Studies on the bioavailability of zinc in humans: effects of heme and non-heme iron on the absorption of zinc. American Journal of Clinical Nutrition 34, 475482.Google Scholar
Specker, B. L. & Tsang, R. C. (1987). Bone mineralization. Annales Nestle 45, 1825.Google Scholar
Sundararaj, R., Begum, A., Jesudian, G. & Pereira, S. M. (1969). Seasonal variation in the diets of pre-school children in a village (North Arcot District). 2. Intake of vitamins and minerals. Indian Journal of Medical Research 57, 375383.Google Scholar
Taylor, C. M., Bacon, J. R., Aggett, P. J. & Bremner, I. (1991). Homeostatic regulation of zinc absorption and endogenous losses in zinc-deprived men. American Journal of Clinical Nutrition 53, 755763.CrossRefGoogle ScholarPubMed
Udomkesmalee, E., Dhanamitta, S., Yhoung-Aree, J., Rojroongwasinkul, N. & Smith, J. C. (1990). Biochemical evidence suggestive of suboptimal zinc and vitamin A status in schoolchildren in Northeast Thailand. American Journal of Clinical Nutrition 52, 564567.Google Scholar
Valyasevi, A., & Dhanamitta, S. (1967). Studies of bladder stone disease in Thailand. VII. Urinary studies in newborn and infants of hypo-and hyper-endemic areas. American Journal of Clinical Nutrition 20, 13691377.Google Scholar
Valyasevi, A., Dhanamitta, S. & van Reen, R. (1969). Studies of bladder stone disease in Thailand. X. Effect of orthophosphate and nonfat dry milk supplementations on urine composition. American Journal of Clinical Nutrition 22, 218227.Google Scholar
Valyasevi, A., Halstead, S. B., Pantuwatana, S. & Tankayul, C. (1967). Studies of bladder stone disease in Thailand. IV. Dietary habits, nutritional intake, and infant feeding practices among residents of a hypo-and hyper-endemic area. American Journal of Clinical Nutrition 20, 13401351.Google Scholar
Vaughan, J. P., Zumrawi, F., Waterlow, J. C. & Kirkwood, B. R. (1981). An evaluation of dried skimmed milk on children's growth in Khartoum Province, Sudan. Nutrition Research 1, 243252.CrossRefGoogle Scholar
Wacker, W. E. C. & Vallee, B. L. (1964). Magnesium. In Mineral Metabolism, Vol. 2A, pp. 483521 [Comar, C. L. and Bronner, F., editor]. New York: Academic Press.Google Scholar
Walker, A. R. P. (1951). Cereals, phytic acid, and calcification. Lancet 261, 244248.CrossRefGoogle Scholar
Walker, A. R. P. (1954). Does a low intake of calcium retard growth or conduce to stuntedness? American Journal of Clinical Nutrition 2, 265271.Google Scholar
Walker, A. R. P. (1972). The human requirement of calcium: should low intakes be supplemented? American Journal of Clinical Nutrition 25, 518530.Google Scholar
Walravens, P. A., Chakar, A., Mokni, R., Denise, J. & Lemonnier, D. (1992). Zinc supplements in breastfed infants. Lancet 340, 683685.Google Scholar
Walravens, P. A. & Hambidge, K. M. (1976). Growth of infants fed a zinc supplemented formula. American Journal of Clinical Nutrition 29, 11141121.CrossRefGoogle ScholarPubMed
Walravens, P. A., Hambidge, K. M. & Koepfer, D. M. (1989). Zinc supplementation in infants with a nutritional pattern of failure to thrive: a double-blind, controlled study. Pediatrics 83, 532538.CrossRefGoogle ScholarPubMed
Walravens, P. A., Krebs, N. F. & Hambidge, K. M. (1983). Linear growth of low income preschool children receiving a zinc supplement. American Journal of Clinical Nutrition 38, 195201.Google Scholar
Waterlow, J. C. (1988). Observations on the natural history of stunting. In Linear Growth Retardation in Less Developed Countries (Nestlé Nutrition Workshop Series Vol. 14), pp. 116 [Waterlow, J. C., editor]. New York: Raven Press.Google Scholar
Widdowson, E. M. & Dickerson, J. W. (1964). Chemical composition of the body. In Mineral Metabolism, Vol. 2A, pp. 1247 [Comar, C. L. and Bronner, F., editor]. New York: Academic Press.Google Scholar
Widdowson, E. M., McCance, R. A., Harrison, G. E. & Sutton, A. (1963). Effect of giving phosphate supplements to breast-fed babies on absorption and excretion of calcium, strontium, magnesium, and phosphorus. Lancet ii, 12501251.Google Scholar
Xu, P., Price, J., Wise, A. & Aggett, P. J. (1992). Interaction of inositol phosphates with calcium, zinc, and histidine. Journal of Inorganic Biochemistry, 47, 119130.Google Scholar
Ziegler, E. E., Serfass, R. E., Nelson, S. E., Figueroa-Colón, R., Edwards, B. B., Houk, R. S. & Thompson, J. J. (1989). Effect of low zinc intake on absorption and excretion of zinc by infants studied with 70Zn as extrinsic tag. Journal of Nutrition 119, 16471653.Google Scholar