Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T13:28:19.015Z Has data issue: false hasContentIssue false

Development and complications of nutritional deficiencies after bariatric surgery

Published online by Cambridge University Press:  25 November 2022

Nele Steenackers
Affiliation:
Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
Bart Van der Schueren
Affiliation:
Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
Patrick Augustijns
Affiliation:
Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
Tim Vanuytsel
Affiliation:
Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
Christophe Matthys*
Affiliation:
Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
*
*Corresponding author: Christophe Matthys, email: [email protected]

Abstract

The clinical effectiveness of bariatric surgery has encouraged the use of bariatric procedures for the treatment of morbid obesity and its comorbidities, with sleeve gastrectomy and Roux-en-Y gastric bypass being the most common procedures. Notwithstanding its success, bariatric procedures are recognised to predispose the development of nutritional deficiencies. A framework is proposed that provides clarity regarding the immediate role of diet, the gastrointestinal tract and the medical state of the patient in the development of nutritional deficiencies after bariatric surgery, while highlighting different enabling resources that may contribute. Untreated, these nutritional deficiencies can progress in the short term into haematological, muscular and neurological complications and in the long term into skeletal complications. In this review, we explore the development of nutritional deficiencies after bariatric surgery through a newly developed conceptual framework. An in-depth understanding will enable the optimisation of the post-operative follow-up, including detecting clinical signs of complications, screening for laboratory abnormalities and treating nutritional deficiencies.

Type
Review Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Organization, WH (2020) Overweight and Obesity: Fact Sheet, https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.Google Scholar
WHO (2017) The Double Burden of Malnutrition. Policy Brief. Geneva: World Health Organization.Google Scholar
Wells, JC, Sawaya, AL, Wibaek, R, et al. (2020) The double burden of malnutrition: aetiological pathways and consequences for health. Lancet 395, 7588. doi: 10.1016/S0140-6736(19)32472-9.CrossRefGoogle ScholarPubMed
Ames, BN (2006) Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A 103, 1758917594. doi: 10.1073/pnas.0608757103.CrossRefGoogle ScholarPubMed
Astrup, A & Bugel, S (2019) Overfed but undernourished: recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int J Obes (Lond) 43, 219232. doi: 10.1038/s41366-018-0143-9.CrossRefGoogle ScholarPubMed
United Nations (2017) Work Programme of the United Nations Decade of Action on Nutrition (2016–2025), https://www.un.org/nutrition/sites/www.un.org.nutrition/files/general/pdf/work_programme_nutrition_decade.pdf.Google Scholar
Steenackers, N, Mutwiri, L, van der Schueren, B & Matthys, C (2020) Do we need dietary reference values for people with obesity? Nutr Bull 45, 358361. doi: 10.1111/nbu.12465.CrossRefGoogle Scholar
Bray, GA, Fruhbeck, G, Ryan, DH & Wilding, JP (2016) Management of obesity. Lancet 387, 19471956. doi: 10.1016/S0140-6736(16)00271-3.CrossRefGoogle ScholarPubMed
Magkos, F, Fraterrigo, G, Yoshino, J, et al. (2016) Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 23, 591601. doi: 10.1016/j.cmet.2016.02.005.CrossRefGoogle ScholarPubMed
Yumuk, V, Tsigos, CFried, M, et al. (2015) European guidelines for obesity management in adults. Obes Facts 8, 402424. doi: 10.1159/000442721.CrossRefGoogle ScholarPubMed
Jensen, MD, Ryan, DH, Apovian, CM, et al. (2014) 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol 63, 29853023. doi: 10.1016/j.jacc.2013.11.004.CrossRefGoogle Scholar
Davies, M, Færch, L, Jeppesen, OK, et al. (2021)Semaglutide 2.4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 397, 971984. doi: 10.1016/S0140-6736(21)00213-0.CrossRefGoogle ScholarPubMed
Wadden, TA, Bailey, TS, Billings, LK, et al. (2021) Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA. doi: 10.1001/jama.2021.1831.CrossRefGoogle ScholarPubMed
Rubino, D, Abrahamsson, N, Davies, M, et al. (2021) Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: the STEP 4 randomized clinical trial. JAMA 325, 14141425. doi: 10.1001/jama.2021.3224.CrossRefGoogle ScholarPubMed
Arterburn, DE & Courcoulas, AP (2014) Bariatric surgery for obesity and metabolic conditions in adults. BMJ 349, g3961. doi: 10.1136/bmj.g3961.CrossRefGoogle ScholarPubMed
Stefater, MA, Wilson-Pérez, HE, Chambers, AP, Sandoval, DA & Seeley, RJ (2012) All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev 33, 595622. doi: 10.1210/er.2011-1044.CrossRefGoogle Scholar
Angrisani, L, Santonicola, A, Iovino, P, et al. (2018) IFSO worldwide survey 2016: primary, endoluminal, and revisional procedures. Obes Surg 28, 37833794. doi: 10.1007/s11695-018-3450-2.CrossRefGoogle ScholarPubMed
Akalestou, E, Miras, AD, Rutter, GA & le Roux, CW (2022) Mechanisms of weight loss after obesity surgery. Endocr Rev 43, 1934. doi: 10.1210/endrev/bnab022.CrossRefGoogle ScholarPubMed
Nguyen, NT & Varela, JE (2017) Bariatric surgery for obesity and metabolic disorders: state of the art. Nat Rev Gastroenterol Hepatol 14, 160169.CrossRefGoogle ScholarPubMed
Kaufman, J, Billing, J & Billing, P (2016) Metabolism and Pathophysiology of Bariatric Surgery: Nutrition, Procedures, Outcomes and Adverse Effects, 103112. https://www.sciencedirect.com/book/9780128040119/metabolism-and-pathophysiology-of-bariatric-surgery.CrossRefGoogle Scholar
Steenackers, N, Vanuytsel, T, Augustijns, P, et al. (2021) Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 6, 225237. doi: 10.1016/S2468-1253(20)30302-2.CrossRefGoogle ScholarPubMed
Maciejewski, ML, Arterburn, DE, Van Scoyoc, L, et al. (2016) Bariatric surgery and long-term durability of weight loss. JAMA Surg 151, 10461055. doi: 10.1001/jamasurg.2016.2317.CrossRefGoogle ScholarPubMed
Chang, SH, Stoll, CRT, Song, J, et al. (2014) The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg 149, 275287. doi: 10.1001/jamasurg.2013.3654.CrossRefGoogle ScholarPubMed
Cardoso, L, Rodrigues, D, Gomes, L & Carrilho, F (2017) Short- and long-term mortality after bariatric surgery: a systematic review and meta-analysis. Diabetes Obes Metab 19, 12231232. doi: 10.1111/dom.12922.CrossRefGoogle Scholar
Carlsson, LMS, Jacobson, P & Peltonen, M (2021) Life expectancy after bariatric surgery – the Swedish Obese Subjects Study. Reply. N Engl J Med 384, 89. doi: 10.1056/NEJMc2033331.Google Scholar
Brethauer, SA, Kim, J, Chaar, M, et al. (2015) Standardized outcomes reporting in metabolic and bariatric surgery. Surg Obes Relat Dis 11, 489506. doi: 10.1016/j.soard.2015.02.003.Google ScholarPubMed
Arterburn, DE, Telem, DA, Kushner, RF & Courcoulas, AP (2020) Benefits and risks of bariatric surgery in adults: a review. JAMA 324, 879887. doi: 10.1001/jama.2020.12567.CrossRefGoogle ScholarPubMed
Thereaux, J, Lesuffleur, T, Czernichow, S, et al. (2019) Long-term adverse events after sleeve gastrectomy or gastric bypass: a 7-year nationwide, observational, population-based, cohort study. Lancet Diabetes Endocrinol 7, 786795. doi: 10.1016/S2213-8587(19)30191-3.CrossRefGoogle ScholarPubMed
Berger, MM, Shenkin, A, Schweinlin, A, et al. (2022) ESPEN micronutrient guideline. Clin Nutr. doi: 10.1016/j.clnu.2022.02.015.CrossRefGoogle ScholarPubMed
Janmohammadi, P, Sajadi, F, Alizadeh, S & Daneshzad, E (2019) Comparison of energy and food intake between gastric bypass and sleeve gastrectomy: a meta-analysis and systematic review. Obes Surg 29, 10401048, doi: 10.1007/s11695-018-03663-w.CrossRefGoogle ScholarPubMed
Bavaresco, M, Paganini, S, Lima, TP, et al. (2010) Nutritional course of patients submitted to bariatric surgery. Obes Surg 20, 716721. doi: 10.1007/s11695-008-9721-6.CrossRefGoogle ScholarPubMed
Chou, JJ, Lee, W-J, Almalki, O, et al. (2017) Dietary intake and weight changes 5 years after laparoscopic sleeve gastrectomy. Obes Surg 27, 32403246. doi: 10.1007/s11695-017-2765-8.CrossRefGoogle ScholarPubMed
Colossi, FG, Casagrande, DS, Chatkin, R, et al. (2008) Need for multivitamin use in the postoperative period of gastric bypass. Obes Surg 18, 187191. doi: 10.1007/s11695-007-9384-8.CrossRefGoogle ScholarPubMed
Cominetti, C, Garrido, AB & Cozzolino, SMF (2006) Zinc nutritional status of morbidly obese patients before and after Roux-en-Y gastric bypass: a preliminary report. Obes Surg 16, 448453. doi: 10.1381/096089206776327305.CrossRefGoogle ScholarPubMed
de Torres Rossi, RG, Dos Santos, MT, de Souza, FI, de Cassia de Aquino, R & Sarni, RO (2012) Nutrient intake of women 3 years after Roux-en-Y gastric bypass surgery. Obes Surg 22, 15481553. doi: 10.1007/s11695-012-0688-y.CrossRefGoogle ScholarPubMed
Freire, RH, Borges, MC, Alvarez-Leite, JI & Correia, MITD (2012) Food quality, physical activity, and nutritional follow-up as determinant of weight regain after Roux-en-Y gastric bypass. Nutrition 28, 5358. doi: 10.1016/j.nut.2011.01.011.CrossRefGoogle ScholarPubMed
Gesquiere, I, Foulon, V, Augustijns, P, et al. (2017) Micronutrient intake, from diet and supplements, and association with status markers in pre- and post-RYGB patients. Clin Nutr 36, 11751181. doi: 10.1016/j.clnu.2016.08.009.Google ScholarPubMed
Leiro, LS & Melendez-Araujo, MS (2014) Diet micronutrient adequacy of women after 1 year of gastric bypass. Arq Bras Cir Dig 27 (Suppl 1), 2125. doi: 10.1590/s0102-6720201400s100006.CrossRefGoogle ScholarPubMed
Mercachita, TN, Santos, ZL, Limão, J, Carolino, E & Mendes, L (2014) Anthropometric evaluation and micronutrients intake in patients submitted to Laparoscopic Roux-en-Y gastric bypass with a postoperative period of ≥ 1 year. Obes Surg 24, 102108. doi: 10.1007/s11695-013-1057-1.CrossRefGoogle ScholarPubMed
Miller, GD, Norris, A & Fernandez, A (2014) Changes in nutrients and food groups intake following laparoscopic Roux-en-Y gastric bypass (RYGB). Obes Surg 24, 19261932. doi: 10.1007/s11695-014-1259-1.CrossRefGoogle ScholarPubMed
Moize, V, Andreu, A, Flores, L, et al. (2013) Long-term dietary intake and nutritional deficiencies following sleeve gastrectomy or Roux-En-Y gastric bypass in a Mediterranean population. J Acad Nutr Diet 113, 400410. doi: 10.1016/j.jand.2012.11.013.CrossRefGoogle ScholarPubMed
Netto, BD, Moreira, EAM, Patiño, JSR, et al. (2012) Influence of Roux-en-Y gastric bypass surgery on vitamin C, myeloperoxidase, and oral clinical manifestations: a 2-year follow-up study. Nutr Clin Pract 27, 114121. doi: 10.1177/0884533611431462.CrossRefGoogle ScholarPubMed
Novais, PF, Rasera, I Jr, Leite, CV, Marin, FA & de Oliveira, MR (2012) Food intake in women two years or more after bariatric surgery meets adequate intake requirements. Nutr Res 32, 335341. doi: 10.1016/j.nutres.2012.03.016.CrossRefGoogle ScholarPubMed
Riedt, CS, Brolin, RE, Sherrell, RM, Field, MP & Shapses, SA (2006) True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity 14, 19401948. doi: 10.1038/oby.2006.226.CrossRefGoogle ScholarPubMed
Warde-Kamar, J, Rogers, M, Flancbaum, L & Laferrere, B (2004) Calorie intake and meal patterns up to 4 years after Roux-en-Y gastric bypass surgery. Obes Surg 14, 10701079. doi: 10.1381/0960892041975668.CrossRefGoogle ScholarPubMed
Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes & Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (2000) DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington, DC: National Academies Press, US.Google Scholar
Al-Najim, W, Docherty, NG & le Roux, CW (2018) Food intake and eating behavior after bariatric surgery. Physiol Rev 98, 11131141. doi: 10.1152/physrev.00021.2017.CrossRefGoogle ScholarPubMed
Laurenius, A, Larsson, I, Bueter, M, et al. (2012) Changes in eating behaviour and meal pattern following Roux-en-Y gastric bypass. Int J Obes (Lond) 36, 348355. doi: 10.1038/ijo.2011.217.CrossRefGoogle ScholarPubMed
Dagan, SS, Goldenshluger, A, Globus, I, et al. (2017) Nutritional recommendations for adult bariatric surgery patients: clinical practice. Adv Nutr 8, 382394. doi: 10.3945/an.116.014258.CrossRefGoogle Scholar
Makaronidis, JM, Neilson, S, Tymoszuk, U, et al. (2016) Reported appetite, taste and smell changes following Roux-en-Y gastric bypass and sleeve gastrectomy: effect of gender, type 2 diabetes and relationship to post-operative weight loss. Appetite 107, 93105. doi: 10.1016/j.appet.2016.07.029.CrossRefGoogle ScholarPubMed
Odom, J, Zalesin, KC, Washington, TL, et al. (2010) Behavioral predictors of weight regain after bariatric surgery. Obes Surg 20, 349356. doi: 10.1007/s11695-009-9895-6.CrossRefGoogle ScholarPubMed
Zarshenas, N, Tapsell, LC, Neale, EP, Batterham, M & Talbot, ML (2020) The relationship between Bariatric surgery and diet quality: a systematic review. Obes Surg 30, 17681792. doi: 10.1007/s11695-020-04392-9.CrossRefGoogle ScholarPubMed
Freeman, RA, Overs, SE, Zarshenas, N, Walton, KL & Jorgensen, JO (2014) Food tolerance and diet quality following adjustable gastric banding, sleeve gastrectomy and Roux-en-Y gastric bypass. Obes Res Clin Pract 8, e115e200. doi: 10.1016/j.orcp.2013.02.002.CrossRefGoogle ScholarPubMed
Cano-Valderrama, O, Sanchez-Pernaute, A, Rubio-Herrera, MA, Dominguez-Serrano, I & Torres-Garcia, AJ (2017) Long-term food tolerance after Bariatric surgery: comparison of three different surgical techniques. Obes Surg 27, 28682872. doi: 10.1007/s11695-017-2703-9.CrossRefGoogle ScholarPubMed
Kafri, N, Valfer, R, Nativ, O, Shiloni, E & Hazzan, D (2011) Health behavior, food tolerance, and satisfaction after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis 7, 8288. doi: 10.1016/j.soard.2010.09.016.CrossRefGoogle ScholarPubMed
Sherf Dagan, S, Keidar, A, Raziel, A, et al. (2017) Do bariatric patients follow dietary and lifestyle recommendations during the first postoperative year? Obes Surg 27, 22582271. doi: 10.1007/s11695-017-2633-6.CrossRefGoogle ScholarPubMed
Suter, M, Calmes, JM, Paroz, A & Giusti, V (2007) A new questionnaire for quick assessment of food tolerance after bariatric surgery. Obes Surg 17, 28. doi: 10.1007/s11695-007-9016-3.CrossRefGoogle ScholarPubMed
Sioka, E, Tzovaras, G, Oikonomou, K, et al. (2013) Influence of eating profile on the outcome of laparoscopic sleeve gastrectomy. Obes Surg 23, 501508. doi: 10.1007/s11695-012-0831-9.CrossRefGoogle ScholarPubMed
Schweiger, C, Weiss, R & Keidar, A (2010) Effect of different bariatric operations on food tolerance and quality of eating. Obes Surg 20, 13931399. doi: 10.1007/s11695-010-0233-9.CrossRefGoogle ScholarPubMed
Novais, PF, Junior, IR, Shiraga, EC & de Oliveira, MR (2011) Food aversions in women during the 2 years after Roux-en-Y gastric bypass. Obes Surg 21, 19211927. doi: 10.1007/s11695-010-0342-5.CrossRefGoogle ScholarPubMed
Moize, V, Geliebter, A, Gluck, ME, et al. (2003) Obese patients have inadequate protein intake related to protein intolerance up to 1 year following Roux-en-Y gastric bypass. Obes Surg 13, 2328. doi: 10.1381/096089203321136548.CrossRefGoogle ScholarPubMed
Coluzzi, I, Raparelli, L, Guarnacci, L, et al. (2016) Food intake and changes in eating behavior after laparoscopic sleeve gastrectomy. Obes Surg 26, 20592067. doi: 10.1007/s11695-015-2043-6.CrossRefGoogle ScholarPubMed
Harbottle, L (2011) Audit of nutritional and dietary outcomes of bariatric surgery patients. Obes Rev 12, 198204.CrossRefGoogle ScholarPubMed
Ortega, J, Ortega-Evangelio, G, Cassinello, N, Sebastia, V & Sebastia, V (2012) What are obese patients able to eat after Roux-en-Y gastric bypass? Obes Facts 5, 339348.CrossRefGoogle ScholarPubMed
Overs, SE, Freeman, RA, Zarshenas, N, Walton, KL & Jorgensen, JO (2012) Food tolerance and gastrointestinal quality of life following three bariatric procedures: adjustable gastric banding, Roux-en-Y gastric bypass, and sleeve gastrectomy. Obes Surg 22, 536543. doi: 10.1007/s11695-011-0573-0.CrossRefGoogle ScholarPubMed
Nicoletti, CF, de Oliveira, BPD, Barbin, R, et al. (2015) Red meat intolerance in patients submitted to gastric bypass: a 4-year follow-up study. Surg Obes Relat Dis 11, 842846. doi: 10.1016/j.soard.2014.10.009.CrossRefGoogle ScholarPubMed
Tack, J & Deloose, E (2014) Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol 28, 741749. doi: 10.1016/j.bpg.2014.07.010.CrossRefGoogle ScholarPubMed
van Beek, AP, Emous, M, Laville, M & Tack, J (2017) Dumping syndrome after esophageal, gastric or bariatric surgery: pathophysiology, diagnosis, and management. Obes Rev 18, 6885. doi: 10.1111/obr.12467.CrossRefGoogle ScholarPubMed
Eisenberg, D, Azagury, DE, Ghiassi, S, Grover, BT & Kim, JJ (2017) ASMBS position statement on postprandial hyperinsulinemic hypoglycemia after bariatric surgery. Surg Obes Relat Dis 13, 371378. doi: 10.1016/j.soard.2016.12.005.CrossRefGoogle ScholarPubMed
Laurenius, A & Engström, M (2016) Early dumping syndrome is not a complication but a desirable feature of Roux-en-Y gastric bypass surgery. Clin Obes 6, 332340.CrossRefGoogle Scholar
Monsivais, P & Drewnowski, A (2009) Lower-energy-density diets are associated with higher monetary costs per kilocalorie and are consumed by women of higher socioeconomic status. J Am Diet Assoc 109, 814822. doi: 10.1016/j.jada.2009.02.002.CrossRefGoogle ScholarPubMed
Smelt, HJM, Pouwels, S, Smulders, JF & Hazebroek, EJ (2020) Patient adherence to multivitamin supplementation after bariatric surgery: a narrative review. J Nutr Sci 9, e46. doi: 10.1017/jns.2020.41.CrossRefGoogle ScholarPubMed
Luca, P, Nicolas, C, Marina, V, Sarah, B & Andrea, L (2021) Where are my patients? Lost and found in bariatric surgery. Obes Surg 31, 19791985. doi: 10.1007/s11695-020-05186-9.CrossRefGoogle ScholarPubMed
Mechanick, JI, Apovian, C, Brethauer, S, et al. (2020) Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures – 2019 update: cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic and Bariatric surgery, obesity medicine association, and American Society of anesthesiologists. Obesity (Silver Spring) 28, O1O58. doi: 10.1002/oby.22719.CrossRefGoogle Scholar
Busetto, L, Dicker, D, Azran, C, et al. (2017) Practical recommendations of the obesity management task force of the European Association for the Study of Obesity for the post-bariatric surgery medical management. Obes Facts 10, 597632. doi: 10.1159/000481825.CrossRefGoogle Scholar
Elkins, G, Whitfield, P, Marcus, J, et al. (2005) Noncompliance with behavioral recommendations following bariatric surgery. Obes Surg 15, 546551. doi: 10.1381/0960892053723385.CrossRefGoogle ScholarPubMed
James, H, Lorentz, P & Collazo-Clavell, ML (2016) Patient-reported adherence to empiric vitamin/mineral supplementation and related nutrient deficiencies after Roux-en-Y gastric bypass. Obes Surg 26, 26612666. doi: 10.1007/s11695-016-2155-7.CrossRefGoogle ScholarPubMed
Ha, J, Kwon, Y, Kwon, J-W, et al. (2021) Micronutrient status in bariatric surgery patients receiving postoperative supplementation per guidelines: insights from a systematic review and meta-analysis of longitudinal studies. Obes Rev 22, e13249. doi: 10.1111/obr.13249.CrossRefGoogle ScholarPubMed
Henfridsson, P, Laurenius, A, Wallengren, O, et al. (2019) Micronutrient intake and biochemistry in adolescents adherent or nonadherent to supplements 5 years after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis 15, 14941502. doi: 10.1016/j.soard.2019.06.012.CrossRefGoogle ScholarPubMed
Ledoux, S, Calabrese, D, Bogard, C, et al. (2014) Long-term evolution of nutritional deficiencies after gastric bypass: an assessment according to compliance to medical care. Ann Surg 259, 11041110. doi: 10.1097/SLA.0000000000000249.CrossRefGoogle ScholarPubMed
Steenackers, N, Vandewynckel, S, Boedt, T, et al. (2022) Compliance and patients’ perspectives towards nutritional supplementation following bariatric surgery. Obes Surg 32, 18041813. doi: 10.1007/s11695-022-06047-3.Google Scholar
Aggett, PJ (2010) Population reference intakes and micronutrient bioavailability: a European perspective. Am J Clin Nutr 91, 1433S1437S.CrossRefGoogle ScholarPubMed
Kiela, PR & Ghishan, FK (2016) Physiology of intestinal absorption and secretion. Best Pract Res: Clin Gastroenterol 30, 145159.CrossRefGoogle ScholarPubMed
Kwon, Y, Kim, HJ, Menzo, EL, et al. (2014) Anemia, iron and vitamin B12 deficiencies after sleeve gastrectomy compared to Roux-en-Y gastric bypass: a meta-analysis. Surg Obes Relat Dis 10, 589597. doi: 10.1016/j.soard.2013.12.005.CrossRefGoogle ScholarPubMed
Syn, NL, Cummings, DE, Wang, LZ, et al. (2021) Association of metabolic–bariatric surgery with long-term survival in adults with and without diabetes: a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. Lancet 397, 18301841. doi: 10.1016/S0140-6736(21)00591-2.CrossRefGoogle ScholarPubMed
Pohl, D, Fox, M, Fried, M, et al. (2008) Do we need gastric acid? Digestion 77, 184197. doi: 10.1159/000142726.CrossRefGoogle ScholarPubMed
Marcuard, SP, Sinar, DR, Swanson, MS, Silverman, JF & Levine, JS (1989) Absence of luminal intrinsic factor after gastric bypass surgery for morbid obesity. Dig Dis Sci 34, 12381242. doi: 10.1007/BF01537272.CrossRefGoogle ScholarPubMed
Chan, LN (2013) Drug–nutrient interactions. JPEN J Parenter Enteral Nutr 37, 450459. doi: 10.1177/0148607113488799.CrossRefGoogle ScholarPubMed
Boullata, JI & Hudson, LM (2012) Drug–nutrient interactions: a broad view with implications for practice. J Acad Nutr Diet 112, 506517. doi: 10.1016/j.jada.2011.09.002.CrossRefGoogle ScholarPubMed
Mason, P (2010) Important drug–nutrient interactions. Proc Nutr Soc 69, 551557. doi: 10.1017/S0029665110001576.CrossRefGoogle ScholarPubMed
Mohn, ES, Kern, HJ, Saltzman, E, Mitmesser, SH & McKay, DL (2018) Evidence of drug–nutrient interactions with chronic use of commonly prescribed medications: an update. Pharmaceutics 10, 36.CrossRefGoogle ScholarPubMed
Prescott, JD, Drake, VJ & Stevens, JF (2018) Medications and micronutrients: identifying clinically relevant interactions and addressing nutritional needs. J Pharm Technol 34, 216230. doi: 10.1177/8755122518780742.CrossRefGoogle ScholarPubMed
Duncan, A, Talwar, D, McMillan, DC, Stefanowicz, F & O’Reilly, DS (2012) Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr 95, 6471. doi: 10.3945/ajcn.111.023812.CrossRefGoogle ScholarPubMed
Steenackers, N, Van der Schueren, B, Mertens, A, et al. (2018) Iron deficiency after bariatric surgery: what is the real problem? Proc Nutr Soc 77, 445455. doi: 10.1017/S0029665118000149.CrossRefGoogle ScholarPubMed
Stenberg, E, Dos Reis Falcão, LF, O’Kane, M, et al. (2022) Guidelines for perioperative care in bariatric surgery: enhanced recovery after surgery (ERAS) society recommendations: a 2021 update. World J Surg 46, 729751. doi: 10.1007/s00268-021-06394-9.CrossRefGoogle ScholarPubMed
Bullen, NL, Parmar, J, Gilbert, J, et al. (2019) How effective is the multidisciplinary team approach in bariatric surgery? Obes Surg 29, 32323238. doi: 10.1007/s11695-019-03975-5.CrossRefGoogle ScholarPubMed
Moroshko, I, Brennan, L & O’Brien, P (2012) Predictors of attrition in bariatric aftercare: a systematic review of the literature. Obes Surg 22, 16401647. doi: 10.1007/s11695-012-0691-3.CrossRefGoogle ScholarPubMed
Wheeler, E, Prettyman, A, Lenhard, MJ & Tran, K (2008) Adherence to outpatient program postoperative appointments after bariatric surgery. Surg Obes Relat Dis 4, 515520. doi: 10.1016/j.soard.2008.01.013.CrossRefGoogle ScholarPubMed
Bielawska, B, Ouellette-Kuntz, H, Zevin, B, Anvari, M & Patel, SV (2021) Early postoperative follow-up reduces risk of late severe nutritional complications after Roux-En-Y gastric bypass: a population based study. Surg Obes Relat Dis 17, 17401750. doi: 10.1016/j.soard.2021.05.035.CrossRefGoogle ScholarPubMed
Van den Heede, K, Ten Geuzendam, B, Dossche, D, et al. (2020) Bariatric Surgery in Belgium: Organisation and Payment of Care Before and after Surgery. KCE Reports 329. D/2020/10.273/06. Health Services Research (HSR). Brussels: Belgian Health Care Knowledge Centre (KCE).Google Scholar
Nuzzo, A, Czernichow, S, Hertig, A, et al. (2021) Prevention and treatment of nutritional complications after bariatric surgery. Lancet Gastroenterol Hepatol 6, 238251. doi: 10.1016/S2468-1253(20)30331-9.CrossRefGoogle ScholarPubMed
Bielawska, B, Ouellette-Kuntz, H, Patel, SV, Anvari, M & Zevin, B (2020) Severe nutritional complications after bariatric surgery in Ontario adults: a population-based descriptive study. Surg Obes Relat Dis 16, 17841793. doi: 10.1016/j.soard.2020.06.028.CrossRefGoogle ScholarPubMed
Rives-Lange, C, Rassy, N, Carette, C, et al. (2022) Seventy years of bariatric surgery: a systematic mapping review of randomized controlled trials. Obes Rev, e13420. doi: 10.1111/obr.13420.CrossRefGoogle ScholarPubMed
von Drygalski, A & Andris, DA (2009) Anemia after bariatric surgery: more than just iron deficiency. Nutr Clin Pract 24, 217226. doi: 10.1177/0884533609332174.CrossRefGoogle ScholarPubMed
Pasricha, SR, Tye-Din, J, Muckenthaler, MU & Swinkels, DW (2021) Iron deficiency. Lancet 397, 233248. doi: 10.1016/S0140-6736(20)32594-0.CrossRefGoogle ScholarPubMed
Kwon, Y, Ha, J, Lee, Y-H, et al. (2022) Comparative risk of anemia and related micronutrient deficiencies after Roux-en-Y gastric bypass and sleeve gastrectomy in patients with obesity: an updated meta-analysis of randomized controlled trials. Obes Rev 23, e13419. doi: 10.1111/obr.13419.CrossRefGoogle ScholarPubMed
Marambio, A, Watkins, G, Castro, F, et al. (2014) Changes in iron transporter divalent metal transporter 1 in proximal jejunum after gastric bypass. World J Gastroenterol. doi: 10.3748/wjg.v20.i21.6534.CrossRefGoogle ScholarPubMed
Bal, BS, Finelli, FC, Shope, TR & Koch, TR (2012) Nutritional deficiencies after bariatric surgery. Nat Rev Endocrinol 8, 544556. doi: 10.1038/nrendo.2012.48.CrossRefGoogle ScholarPubMed
Stover, PJ (2004) Physiology of folate and vitamin B12 in health and disease. Nutr Rev 62, S3S12; discussion S13. doi: 10.1111/j.1753-4887.2004.tb00070.x.CrossRefGoogle ScholarPubMed
Hunt, A, Harrington, D & Robinson, S (2014) Vitamin B12 deficiency. BMJ 349, g5226. doi: 10.1136/bmj.g5226.CrossRefGoogle ScholarPubMed
Vynckier, AK, Ceulemans, D, Vanheule, G, et al. (2021) Periconceptional folate supplementation in women after bariatric surgery-a narrative review. Nutrients 13. doi: 10.3390/nu13051557.CrossRefGoogle ScholarPubMed
Corbeels, K, Verlinden, L, Lannoo, M, et al. (2018) Thin bones: vitamin D and calcium handling after bariatric surgery. Bone Rep 8, 5763. doi: 10.1016/j.bonr.2018.02.002.CrossRefGoogle ScholarPubMed
Bouillon, R, Manousaki, D, Rosen, C, et al. (2022) The health effects of vitamin D supplementation: evidence from human studies. Nat Rev Endocrinol 18, 96110. doi: 10.1038/s41574-021-00593-z.CrossRefGoogle ScholarPubMed
Saad, RK, Ghezzawi, M, Habli, D, Alami, RS & Chakhtoura, M (2022) Fracture risk following bariatric surgery: a systematic review and meta-analysis. Osteoporos Int 33, 511526. doi: 10.1007/s00198-021-06206-9.CrossRefGoogle ScholarPubMed
Gagnon, C & Schafer, AL (2018) Bone health after bariatric surgery. JBMR Plus 2, 121133. doi: 10.1002/jbm4.10048.CrossRefGoogle ScholarPubMed
Krez, AN & Stein, EM (2020) The skeletal consequences of bariatric surgery. Curr Osteoporos Rep 18, 262272. doi: 10.1007/s11914-020-00579-2.CrossRefGoogle ScholarPubMed
Beavers, KM, Greene, KA & Yu, EW (2020) Management of endocrine disease: bone complications of bariatric surgery: updates on sleeve gastrectomy, fractures, and interventions. Eur J Endocrinol 183, R119R132. doi: 10.1530/EJE-20-0548.CrossRefGoogle ScholarPubMed
Landais, A (2014) Neurological complications of bariatric surgery. Obes Surg 24, 18001807. doi: 10.1007/s11695-014-1376-x.CrossRefGoogle ScholarPubMed
Haid, RW, Gutmann, L & Crosby, TW (1982) Wernicke–Korsakoff encephalopathy after gastric plication. JAMA 247, 25662567.CrossRefGoogle ScholarPubMed
Yasawy, ZM & Hassan, A (2017) Post bariatric surgery acute axonal polyneuropathy: doing your best is not always enough. Ann Indian Acad Neurol 20, 309312. doi: 10.4103/aian.AIAN_24_17.Google ScholarPubMed
AlShareef, A, Albaradei, O, AlOtaibi, HA, Alanazy, MH & Abuzinadah, AR (2019) Acute paralytic post-bariatric surgery axonal polyneuropathy: clinical features and outcome. Eur Neurol 81, 239245. doi: 10.1159/000503286.CrossRefGoogle ScholarPubMed
Oudman, E, Wijnia, JW, van Dam, M, Biter, LU & Postma, A (2018) Preventing wernicke encephalopathy after bariatric surgery. Obes Surg 28, 20602068.CrossRefGoogle ScholarPubMed
Berger, JR (2004) The neurological complications of bariatric surgery. Arch Neurol 61, 11851189. doi: 10.1001/archneur.61.8.1185.CrossRefGoogle ScholarPubMed
Spits, Y, De Laey, JJ & Leroy, BP (2004) Rapid recovery of night blindness due to obesity surgery after vitamin A repletion therapy. Br J Ophthalmol 88, 583585. doi: 10.1136/bjo.2003.022459.CrossRefGoogle ScholarPubMed
Lee, WB, Hamilton, SM, Harris, JP & Schwab, IR (2005) Ocular complications of hypovitaminosis a after bariatric surgery. Ophthalmology 112, 10311034. doi: 10.1016/j.ophtha.2004.12.045.CrossRefGoogle ScholarPubMed
Sherf-Dagan, S, Buch, A, Ben-Porat, T, Sakran, N & Sinai, T (2021) Vitamin E status among bariatric surgery patients: a systematic review. Surg Obes Relat Dis 17, 816830. doi: 10.1016/j.soard.2020.10.029.CrossRefGoogle ScholarPubMed
Kumar, N, McEvoy, KM & Ahlskog, JE (2003) Myelopathy due to copper deficiency following gastrointestinal surgery. Arch Neurol 60, 17821785.CrossRefGoogle ScholarPubMed