We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. Numerical methods and analysis of stability and convergence of numerical scheme for the variable fractional order partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the space-time variable fractional order diffusion equation on a finite domain. It is worth mentioning that here we use the Coimbra-definition variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation is proposed and then the stability and convergence of the numerical scheme are investigated. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
We show that the zeros of a trigonometric polynomial of degree N with the usual (2N + 1) terms can be calculated by computing the eigenvalues of a matrix of dimension 2N with real-valued elements Mjk. This matrix is a multiplication matrix in the sense that, after first defining a vector whose elements are the first 2N basis functions, . This relationship is the eigenproblem; the zeros tk are the arccosine function of λk/2 where the λk are the eigenvalues of . We dub this the “Fourier Division Companion Matrix”, or FDCM for short, because it is derived using trigonometric polynomial division. We show through examples that the algorithm computes both real and complex-valued roots, even double roots, to near machine precision accuracy.
We present a hybrid numerical method for simulating fluid flow through a compliant, closed tube, driven by an internal source and sink. Fluid is assumed to be highly viscous with its motion described by Stokes flow. Model geometry is assumed to be axisymmetric, and the governing equations are implemented in axisymmetric cylindrical coordinates, which capture 3D flow dynamics with only 2D computations. We solve the model equations using a hybrid approach: we decompose the pressure and velocity fields into parts due to the surface forcings and due to the source and sink, with each part handled separately by means of an appropriate method. Because the singularly-supported surface forcings yield an unsmooth solution, that part of the solution is computed using the immersed interface method. Jump conditions are derived for the axisymmetric cylindrical coordinates. The velocity due to the source and sink is calculated along the tubular surface using boundary integrals. Numerical results are presented that indicate second-order accuracy of the method.
In [35,36], we presented an h-adaptive Runge-Kutta discontinuous Galerkin method using troubled-cell indicators for solving hyperbolic conservation laws. A tree data structure (binary tree in one dimension and quadtree in two dimensions) is used to aid storage and neighbor finding. Mesh adaptation is achieved by refining the troubled cells and coarsening the untroubled “children”. Extensive numerical tests indicate that the proposed h-adaptive method is capable of saving the computational cost and enhancing the resolution near the discontinuities. In this paper, we apply this h-adaptive method to solve Hamilton-Jacobi equations, with an objective of enhancing the resolution near the discontinuities of the solution derivatives. One- and two-dimensional numerical examples are shown to illustrate the capability of the method.
In this paper, we will investigate the error estimates and the superconvergence property of mixed finite element methods for a semilinear elliptic control problem with an integral constraint on control. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element and the control variable is approximated by piecewise constant functions. We derive some superconvergence properties for the control variable and the state variables. Moreover, we derive L∞- and H−1 -error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.
In this paper, an extremal eigenvalue problem to the Sturm-Liouville equations with discontinuous coefficients and volume constraint is investigated. Liouville transformation is applied to change the problem into an equivalent minimization problem. Finite element method is proposed and the convergence for the finite element solution is established. A monotonic decreasing algorithm is presented to solve the extremal eigenvalue problem. A global convergence for the algorithm in the continuous case is proved. A few numerical results are given to depict the efficiency of the method.