Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T02:32:57.472Z Has data issue: false hasContentIssue false

Multigrid Solution of a Lavrentiev-Regularized State-Constrained Parabolic Control Problem

Published online by Cambridge University Press:  28 May 2015

Alfio Borzì*
Affiliation:
Institut für Mathematik, Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Str. 30, 97074 Würzburg, Germany
Sergio González Andrade*
Affiliation:
Research Group on Optimization, Departamento de Matemática, Escuela Politécnica Nacional, Ladrón de Guevara E1 1-253, Quito, Ecuador
*
Corresponding author.Email address:[email protected]
Corresponding author.Email address:[email protected]
Get access

Abstract

A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multi-grid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration. Results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Borzì, A., Multigrid methods for parabolic distributed optimal control problems, J. Comp. Appl. Math., 157 (2003), pp. 365382.Google Scholar
[2] Borzì, A., Smoothers for control- and state-constrained optimal control problems, Computing and Visualization in Science, 11 (2008), pp. 5966.Google Scholar
[3] Borzì, A., Space-time multigrid methods for solving unsteady optimal control problems, (Chapter 5) in Biegler, L.T., Ghattas, O., Heinkenschloss, M., Keyes, D. and Van Bloemen Waanders, B. (Eds.), Real-Time PDE-Constrained Optimization, Computational Science and Engineering, Vol. 3, SIAM, Philadelphia, 2007.Google Scholar
[4] Borzì, A. and Griesse, R., Distributed optimal control of lambda-omega systems, Journal of Numerical Mathematics, 14 (2006), pp. 1740.Google Scholar
[5] Borzì, A. and Kunisch, K., A multigrid scheme for elliptic constrained optimal control problems, Comput. Optim. Appl., 31 (2005), pp. 309333.Google Scholar
[6] Borzì, A. and Von Winckel, G., Multigrid methods and sparse-grid collocation techniques for parabolic optimal control problems with random coefficients, SIAM J. Sci. Comp., 31 (2009), pp. 21722192.Google Scholar
[7] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp. 333390.Google Scholar
[8] Dreyer, Th., Maar, B., and Schulz, V, Multigrid Optimization in Applications, J. Comput. Appl. Math., 120 (2000), pp. 6784.CrossRefGoogle Scholar
[9] Emmrich, E., Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations, Computational Methods in Applied Mathematics, 9 (2009), pp. 3762.Google Scholar
[10] González, S. and Rade, and Borzì, A., Multigrid second-order accurate solution of parabolic control-constrained problems, Comput. Optim. Appl., 2010, pp. 132. DOI: 10.1007/s10589-010-9358-y.Google Scholar
[11] Hackbusch, W., Elliptic Differential Equations, Springer-Verlag, Berlin, 1992.Google Scholar
[12] Hackbusch, W., Numerical solution of linear and nonlinear parabolic optimal control problems, Lecture Notes in Control and Information Science, Springer-Verlag, 1981.Google Scholar
[13] Hintermüller, M., Ito, K. and Kunisch, K., The primal-dual active set strategy as a semi-smooth Newton method, SIAM J. Opt., 13 (2003), pp. 865888.CrossRefGoogle Scholar
[13] Ito, K. and Kunisch, K., Asymptotic properties of receding horizon optimal control problems, SIAM J. Control Optim., 40 (5) (2002), pp. 1585-1610.CrossRefGoogle Scholar
[15] Ito, K. and Kunisch, K., Semi-smooth Newton methods for state-constrained optimal control problems, Systems and Control Letters, 50 (2003), pp. 221228.Google Scholar
[16] Kornhuber, R., On constrained Newton linearization and multigrid for variational inequalities, Numer. Math, 91 (2002), pp. 699721.Google Scholar
[17] Lions, J.L., Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.Google Scholar
[18] Malanowski, K., Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems, Appl. Math. Optim., 8 (1981), pp. 6995.Google Scholar
[19] Meyer, C., Rösch, A. and Tröltzsch, F., Optimal control ofPDEs with regularizedpointwise state constraints, Comput. Optim. Appl., 33 (2006), 209228.Google Scholar
[20] Nagaiah, CH., Kunisch, K. and Plank, G., Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology, Comput. Optim. Appl., 2010, pp. 130. DOI:10.1007/s10589-009-9280-3.Google Scholar
[21] Neitzel, I. and Tröltzsch, F., On regularization methods for the numerical solution of parabolic control problems with pointwise state constraints, ESAIM: Control, Optimization and Calculus of Variations, 15 (2009), pp. 426453.Google Scholar
[22] Reisinger, C. and Wittum, G., On multigrid for anisotropic equations and variational inequalities pricing multi-dimensional european and american options, Comput. Vis. Sci., 4 (2004), pp. 189197.Google Scholar
[23] Qi, L. and Sun, J., A nonsmooth version of Newton’s method, Math. Programming, 58 (1993), pp. 353–368.CrossRefGoogle Scholar
[24] Stadler, G., Semismooth Newton and augmented Lagrangian methods for a simplified friction problem, SIAM J. Optim., 15 (2004), pp. 39–62.CrossRefGoogle Scholar
[25] Tröltzsch, F., Optimal Control of Partial Differential Equations, AMS, USA, 2010.Google Scholar
[26] Trottenberg, U., Oosterlee, C., and Schüller, A., Multigrid, Academic Press, London, 2001.Google Scholar