Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T07:55:01.201Z Has data issue: false hasContentIssue false

A Collocation Method for Initial Value Problems of Second-Order ODEs by Using Laguerre Functions

Published online by Cambridge University Press:  28 May 2015

Jian-Ping Yan*
Affiliation:
Department of Mathematics, Shanghai Normal University, Shanghai, 200234, P. R. China. Guangdong University of Finance, 510521
Ben-Yu Guo*
Affiliation:
Department of Mathematics, Shanghai Normal University, Shanghai, 200234, P. R. China. Scientific Computing Key Laboratory of Shanghai Universities. Division of Computational Science of E-institute of Shanghai Universities
*
Corresponding author.Email address:[email protected]
Corresponding author.Email address:[email protected]
Get access

Abstract

We propose a collocation method for solving initial value problems of second-order ODEs by using modified Laguerre functions. This new process provides global numerical solutions. Numerical results demonstrate the efficiency of the proposed algorithm.

Type
Research Article
Copyright
Copyright © Global Science Press Limited 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods, Wiley, New York, 1987.Google Scholar
[2]Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
[3]Franco, J. M., Runge-Kutta-Nyström method adapted to the numerical integration of perturbed oscillators, Commp. Phys. Comm., 147 (2002), pp. 770787.CrossRefGoogle Scholar
[4]Funaro, D., Polynomial Approximations of Differential Equations, Springer-Verlag, 1992.CrossRefGoogle Scholar
[5]Guillou, A. and Soulé, J. L., La ré solution numérique des problemes différentiels aux conditions initiales par des méthodes de collocation, R.I.R.O., 3 (1969), pp. 1744.Google Scholar
[6]Guo, B.-Y., Spectral Methods and Their Applications, World Scietific, Singapore, 1998.CrossRefGoogle Scholar
[7]Guo, B.-Y. and Shen, J., Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math., 86 (2000), pp. 635654.CrossRefGoogle Scholar
[8]Guo, B.-Y., Wang, L.-L. and Wang, Z.-Q., Generalized Laguerre interpolation and pseudospectral method for unbounded domains, SIAM J. Numer. Anal., 43 (2006), pp. 25672589.Google Scholar
[9]Guo, B.-Y. and Wang, Z.-Q., Numerical intergration based on Laguerre-Gauss interpolation, Comp. Meth. in Appl. and Engi., 196 (2007), pp. 37263741.Google Scholar
[10]Guo, B.-Y. and Wang, Z.-Q., Legendre-Gauss collocation methods for ordinary differential equations, Adv. in Comp. Math., 30 (2009), pp. 249280.CrossRefGoogle Scholar
[11]Guo, B.-Y. and Wang, Z.-Q., A spectral collocation method for solving initinal value problems of first order ordinary differential equations, Disc Cont. Dyna. Syst. B., 14 (2010), pp. 10291054.Google Scholar
[12]Guo, B.-Y., Wang, Z.-Q., Tian, H.-J. and Wang, L.-L., Integration processes of ordinary differential equations based on Laguerre-Gauss interpolations, Math. Comp., 77 (2008), pp. 181199.CrossRefGoogle Scholar
[13]Guo, B.-Y. and Yan, J.-P., Legendre-Gauss collocation methods for initial value problems of second order ordinary differential equations, Appl. Numer. Math., 59 (2009), pp. 13861408.CrossRefGoogle Scholar
[14]Guo, B.-Y. and Zhang, X.-Y., A new generalized Laguerre approximation and its applications, J. Comp. Appl. Math., 181 (2005), pp. 342363.Google Scholar
[15]Guo, B.-Y. and Zhang, X.-Y., Spectral method for differential equations of degenerate type on unbounded domains by using generalized Laguerre functions, Appl. Numer. Math., 57 (2007), pp. 455471.CrossRefGoogle Scholar
[16]Hairer, E., Unconditionally stable mehtods for second order differential equations, Numer. Math., 32 (1979), pp. 373379.CrossRefGoogle Scholar
[17]Hairer, E., Norsett, S. P. and Wanner, G., Solving Ordinary Differential Equation I: Nonstiff Problems, Springer-Verlag, Berlin, 1987.Google Scholar
[18]Hairer, E. and Wanner, G., Solving Ordinary Differential Equation I: Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
[19]van den Houwen, P. J. and Sommeijer, B. P., Diagonally implicit Runge-Kutta-Nyström) methods with reduced phase-errors for computing oscillating solutions, SIAM J. Numer. Anal., 26 (1989), pp. 414429.CrossRefGoogle Scholar
[20]van den Houwen, P. J., Sommeijer, B. P. and Cong, Nguyen Huu, Stability of collocation-based Runge-Kutta-Nyström methods, BIT, 31 (1991), pp. 469481.CrossRefGoogle Scholar
[21]Kramarz, L., Stability of collocation methods for the numerical solution of y" = f (x, y), BIT, 20 (1980), pp. 215222.CrossRefGoogle Scholar
[22]Lambert, J. D., Numerical Methods for Ordinary Differential Systems, The Initial Value Problem, John Wiley and Sons, Chichester, 1991.Google Scholar
[23]Lie, I. and Nrsett, S. P., Superconvergence for multistep collocation, Math. Comp., 52 (1989), pp. 6579.CrossRefGoogle Scholar
[24]Maday, Y., Pernaud-Thomas, B. and Vandeven, H., Reappraisal of Laguerre type spectral methods, La Recherche Aerospaliale, 6 (1985), pp. 1335.Google Scholar
[25]Mastroianni, G. and Monegato, G., Nystrom interpolants based on zeros of Laguerre polynomials for some Weiner-Hopf equations, IMA J. of Numer. Anal., 17 (1997), pp. 621642.CrossRefGoogle Scholar
[26]Shen, J., Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal., 38 (2000), pp. 11131133.CrossRefGoogle Scholar
[27]Watts, H. A. and Shampine, L. F., A-stable block implicit one-step methods, BIT, 12 (1972), pp. 252266.CrossRefGoogle Scholar
[28]Xu, C.-L. and Guo, B.-Y., Laguerre pseudospectral method for nonlinear partial differential equations, J. Comput. Math., 20 (2002), pp. 413428.Google Scholar
[29]Yan, J.-P. and Guo, B.-Y., Laguerre-Gauss collocation method for initial value problems Of second order ODEs, submitted.Google Scholar