No CrossRef data available.
Article contents
A Collocation Method for Initial Value Problems of Second-Order ODEs by Using Laguerre Functions
Published online by Cambridge University Press: 28 May 2015
Abstract
We propose a collocation method for solving initial value problems of second-order ODEs by using modified Laguerre functions. This new process provides global numerical solutions. Numerical results demonstrate the efficiency of the proposed algorithm.
Keywords
- Type
- Research Article
- Information
- Numerical Mathematics: Theory, Methods and Applications , Volume 4 , Issue 2 , May 2011 , pp. 283 - 295
- Copyright
- Copyright © Global Science Press Limited 2011
References
[1]Butcher, J. C., The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General Linear Methods, Wiley, New York, 1987.Google Scholar
[2]Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
[3]Franco, J. M., Runge-Kutta-Nyström method adapted to the numerical integration of perturbed oscillators, Commp. Phys. Comm., 147 (2002), pp. 770–787.CrossRefGoogle Scholar
[4]Funaro, D., Polynomial Approximations of Differential Equations, Springer-Verlag, 1992.CrossRefGoogle Scholar
[5]Guillou, A. and Soulé, J. L., La ré solution numérique des problemes différentiels aux conditions initiales par des méthodes de collocation, R.I.R.O., 3 (1969), pp. 17–44.Google Scholar
[6]Guo, B.-Y., Spectral Methods and Their Applications, World Scietific, Singapore, 1998.CrossRefGoogle Scholar
[7]Guo, B.-Y. and Shen, J., Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math., 86 (2000), pp. 635–654.CrossRefGoogle Scholar
[8]Guo, B.-Y., Wang, L.-L. and Wang, Z.-Q., Generalized Laguerre interpolation and pseudospectral method for unbounded domains, SIAM J. Numer. Anal., 43 (2006), pp. 2567–2589.Google Scholar
[9]Guo, B.-Y. and Wang, Z.-Q., Numerical intergration based on Laguerre-Gauss interpolation, Comp. Meth. in Appl. and Engi., 196 (2007), pp. 3726–3741.Google Scholar
[10]Guo, B.-Y. and Wang, Z.-Q., Legendre-Gauss collocation methods for ordinary differential equations, Adv. in Comp. Math., 30 (2009), pp. 249–280.CrossRefGoogle Scholar
[11]Guo, B.-Y. and Wang, Z.-Q., A spectral collocation method for solving initinal value problems of first order ordinary differential equations, Disc Cont. Dyna. Syst. B., 14 (2010), pp. 1029–1054.Google Scholar
[12]Guo, B.-Y., Wang, Z.-Q., Tian, H.-J. and Wang, L.-L., Integration processes of ordinary differential equations based on Laguerre-Gauss interpolations, Math. Comp., 77 (2008), pp. 181–199.CrossRefGoogle Scholar
[13]Guo, B.-Y. and Yan, J.-P., Legendre-Gauss collocation methods for initial value problems of second order ordinary differential equations, Appl. Numer. Math., 59 (2009), pp. 1386–1408.CrossRefGoogle Scholar
[14]Guo, B.-Y. and Zhang, X.-Y., A new generalized Laguerre approximation and its applications, J. Comp. Appl. Math., 181 (2005), pp. 342–363.Google Scholar
[15]Guo, B.-Y. and Zhang, X.-Y., Spectral method for differential equations of degenerate type on unbounded domains by using generalized Laguerre functions, Appl. Numer. Math., 57 (2007), pp. 455–471.CrossRefGoogle Scholar
[16]Hairer, E., Unconditionally stable mehtods for second order differential equations, Numer. Math., 32 (1979), pp. 373–379.CrossRefGoogle Scholar
[17]Hairer, E., Norsett, S. P. and Wanner, G., Solving Ordinary Differential Equation I: Nonstiff Problems, Springer-Verlag, Berlin, 1987.Google Scholar
[18]Hairer, E. and Wanner, G., Solving Ordinary Differential Equation I: Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
[19]van den Houwen, P. J. and Sommeijer, B. P., Diagonally implicit Runge-Kutta-Nyström) methods with reduced phase-errors for computing oscillating solutions, SIAM J. Numer. Anal., 26 (1989), pp. 414–429.CrossRefGoogle Scholar
[20]van den Houwen, P. J., Sommeijer, B. P. and Cong, Nguyen Huu, Stability of collocation-based Runge-Kutta-Nyström methods, BIT, 31 (1991), pp. 469–481.CrossRefGoogle Scholar
[21]Kramarz, L., Stability of collocation methods for the numerical solution of y" = f (x, y), BIT, 20 (1980), pp. 215–222.CrossRefGoogle Scholar
[22]Lambert, J. D., Numerical Methods for Ordinary Differential Systems, The Initial Value Problem, John Wiley and Sons, Chichester, 1991.Google Scholar
[23]Lie, I. and Nrsett, S. P., Superconvergence for multistep collocation, Math. Comp., 52 (1989), pp. 65–79.CrossRefGoogle Scholar
[24]Maday, Y., Pernaud-Thomas, B. and Vandeven, H., Reappraisal of Laguerre type spectral methods, La Recherche Aerospaliale, 6 (1985), pp. 13–35.Google Scholar
[25]Mastroianni, G. and Monegato, G., Nystrom interpolants based on zeros of Laguerre polynomials for some Weiner-Hopf equations, IMA J. of Numer. Anal., 17 (1997), pp. 621–642.CrossRefGoogle Scholar
[26]Shen, J., Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal., 38 (2000), pp. 1113–1133.CrossRefGoogle Scholar
[27]Watts, H. A. and Shampine, L. F., A-stable block implicit one-step methods, BIT, 12 (1972), pp. 252–266.CrossRefGoogle Scholar
[28]Xu, C.-L. and Guo, B.-Y., Laguerre pseudospectral method for nonlinear partial differential equations, J. Comput. Math., 20 (2002), pp. 413–428.Google Scholar
[29]Yan, J.-P. and Guo, B.-Y., Laguerre-Gauss collocation method for initial value problems Of second order ODEs, submitted.Google Scholar