Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T19:24:11.004Z Has data issue: false hasContentIssue false

Spatial and temporal deployment of crop roots in CO2-enriched environments

Published online by Cambridge University Press:  01 July 2000

SETH G. PRITCHARD
Affiliation:
USDA–ARS National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832, USA Present address: USDA-ARS Wind Erosion & Water Conservation Laboratory, PO Box 909, Big Spring, Texas 79721–0909, USA (tel +1 915 263 0293; fax +1 915 263 3154).
HUGO H. ROGERS
Affiliation:
USDA–ARS National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832, USA
Get access

Abstract

Growth of crops in CO2-enriched atmospheres typically results in significant changes in root growth and development. Increased root carbohydrates stimulate root growth either directly (functioning as substrates) or indirectly (functioning as signal molecules) by enhancing cell division or cell expansion, or both. Although highly variable, the literature suggests that, generally, initiation and stimulation of lateral roots is favored over the elongation of primary roots, leading to more highly branched, shallower root systems. Such architectural shifts can render root systems less efficient, perhaps contributing to the lower specific root activities often reported. Allocation of carbon (C) to roots fluctuates through the life of the plant; root functional and growth responses should therefore not be viewed as static. In annual crops, C allocation to belowground processes changes as vegetative growth switches to reproduction and maturation. Reductions in C allocation to roots over time might cause temporal shifts in root deployment, perhaps affecting root demography. However, significant changes in root turnover (defined here as root flux or mortality relative to total root pool size) as a result of decreased root longevities in crop plants are unlikely. Consideration of changing C allocation to roots, a more thorough understanding of the mechanistic controls on root longevity, and a better characterization of the rooting habits (life histories) of different crop species will further our understanding of how increasing atmospheric [CO2] will affect root demography. This knowledge will lead the way toward a more thorough understanding of the linkage of atmosphere with belowground plant function and also that of plant function with soil biology and structure. Ultimately, successful modeling of global C and nitrogen (N) cycles will require empirical data concerning spatial and temporal deployment of roots for a range of crop species grown under different agricultural management systems.

Type
Research review
Copyright
© Trustees of the New Phytologist 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)