Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T20:09:08.177Z Has data issue: false hasContentIssue false

A mechanistic model of photoinhibition

Published online by Cambridge University Press:  01 February 2000

HELEN L. MARSHALL
Affiliation:
Swansea Algal Plankton Research Unit, School of Biological Sciences, University of Wales-Swansea, Singleton Park, Swansea SA2 8PP, UK Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK
RICHARD J. GEIDER
Affiliation:
Marine Biological Association of the UK, Citadel Hill, Plymouth PL1 2PB, UK
KEVIN J. FLYNN
Affiliation:
Swansea Algal Plankton Research Unit, School of Biological Sciences, University of Wales-Swansea, Singleton Park, Swansea SA2 8PP, UK
Get access

Abstract

A mechanistic model was developed, to simulate the main facets of photoinhibition in phytoplankton. Photoinhibition is modelled as a time dependent decrease in the initial slope of a photosynthesis versus irradiance curve, related to D1 (photosystem II reaction centre protein) damage and non-photochemical quenching. The photoinhibition model was incorporated into an existing ammonium-nitrate nutrition interaction model capable of simulating photoacclimation and aspects of nitrogen uptake and utilization. Hence the current model can simulate the effects of irradiance on photosynthesis from sub-saturating to inhibitory photon flux densities, during growth on different nitrogen sources and under nutrient stress. Model output conforms well to experimental data, allowing the extent of photoinhibition to be predicted under a range of nutrient and light regimes. The ability of the model to recreate the afternoon depression of photosynthesis and the enhancement of photosynthesis during fluctuating light suggests that these two processes are related to photoinhibition. The model may be used to predict changes in biomass and/or carbon fixation under a wide range of oceanographic situations, and it may also help to explain the progression to dominance of certain algal species, and bloom formation under defined irradiance and nutrient conditions.

Type
Research Article
Copyright
© Trustees of the New Phytologist 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)