Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T20:21:41.111Z Has data issue: false hasContentIssue false

Cerebellar Bergmann glia: an important model to study neuron–glia interactions

Published online by Cambridge University Press:  02 November 2007

Esther López-Bayghen
Affiliation:
Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, México
Sandra Rosas
Affiliation:
Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, México
Francisco Castelán
Affiliation:
Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, México
Arturo Ortega*
Affiliation:
Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, México
*
Correspondence should be addressed to: Arturo Ortega PhD, Departamento de Genética y Biología Molecular, Cinvestav-IPN, Apartado Postal 14-740, México DF 07000, México phone: + 52 55 50613769 fax: + 52 55 5061 3931 email: [email protected]

Abstract

The biochemical effects triggered by the action of glutamate, the main excitatory amino acid, on a specialized type of glia cells, Bergmann glial cells of the cerebellum, are a model system with which to study glia–neuronal interactions. Neuron to Bergmann glia signaling is involved in early stages of development, mainly in cell migration and synaptogenesis. Later, in adulthood, these cells have an important role in the maintenance and proper function of the synapses that they surround. Major molecular targets of this cellular interplay are glial glutamate receptors and transporters, both of which sense synaptic activity. Glutamate receptors trigger a complex network of signaling cascades that involve Ca2+ influx and lead to a differential gene-expression pattern. In contrast, Bergmann glia glutamate transporters participate in the removal of the neurotransmitter from the synaptic cleft and act also as signal transducers that regulate, in the short term, their own activity. These exciting findings strengthen the concept of active participation of glial cells in synaptic transmission and the involvement of neuron–glia circuits in the processing of brain information.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)