Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:03:00.423Z Has data issue: false hasContentIssue false

A dominant connexin43 mutant does not have dominant effects on gap junction coupling in astrocytes

Published online by Cambridge University Press:  04 March 2011

Sameh Wasseff*
Affiliation:
Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
Charles K. Abrams
Affiliation:
Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
Steven S. Scherer*
Affiliation:
Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
*
Correspondence should be addressed to: Sameh Wasseff or Steven S. Scherer, Department of Neurology, University of Pennsylvania, 464 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6077, USA emails: [email protected]; [email protected]
Correspondence should be addressed to: Sameh Wasseff or Steven S. Scherer, Department of Neurology, University of Pennsylvania, 464 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6077, USA emails: [email protected]; [email protected]

Abstract

Dominant mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause oculodentodigital dysplasia (ODDD), a syndrome affecting multiple tissues, including the central nervous system (CNS). We investigated the effects of the G60S mutant, which causes a similar, dominant phenotype in mice (Gja1Jrt/+). Astrocytes in acute brain slices from Gja1Jrt/+ mice transfer sulforhodamine-B comparably to that in their wild-type (WT) littermates. Further, astrocytes and cardiomyocytes cultured from Gja1Jrt/+ mice showed a comparable transfer of lucifer yellow to those from WT mice. In transfected cells, the G60S mutant formed gap junction (GJ) plaques but not functional channels. In co-transfected cells, the G60S mutant co-immunoprecipitated with WT Cx43, but did not diminish GJ coupling as measured by dual patch clamp. Thus, whereas G60S has dominant effects, it did not appreciably reduce GJ coupling.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alao, M.J., Bonneau, D., Holder-Espinasse, M., Goizet, C., Manouvrier-Hanu, S., Mezel, A. et al. (2010) Oculo-dento-digital dysplasia: lack of genotype-phenotype correlation for GJA1 mutations and usefulness of neuro-imaging. European Journal of Medical Genetics 53, 1922.CrossRefGoogle ScholarPubMed
Altevogt, B.M. and Paul, D.L. (2004) Four classes of intercellular channels between glial cells in the CNS. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 24, 43134323.CrossRefGoogle ScholarPubMed
Beltramello, M., Bicego, M., Piazza, V., Ciubotaru, C.D., Mammano, F. and D'Andrea, P. (2003) Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochemical and Biophysical Research Communications 305, 10241033.CrossRefGoogle ScholarPubMed
Bruzzone, R., White, T.W. and Paul, D.L. (1996) Connections with connexins: the molecular basis of direct intercellular signaling. European Journal of Biochemistry/FEBS 238, 127.CrossRefGoogle ScholarPubMed
Bukauskas, F.F., Bukauskiene, A., Bennett, M.V. and Verselis, V.K. (2001) Gating properties of gap junction channels assembled from connexin43 and connexin43 fused with green fluorescent protein. Biophysical Journal 81, 137152.CrossRefGoogle ScholarPubMed
Chanson, M., Kotsias, B.A., Peracchia, C. and O'Grady, S.M. (2007) Interactions of connexins with other membrane channels and transporters. Progress in Biophysics and Molecular Biology 94, 233244.CrossRefGoogle ScholarPubMed
Cina, C., Maass, K., Theis, M., Willecke, K., Bechberger, J.F. and Naus, C.C. (2009) Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. Journal of Neuroscience 29, 20092021.CrossRefGoogle ScholarPubMed
Dermietzel, R., Gao, Y., Scemes, E., Vieira, D., Urban, M., Kremer, M. et al. (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Research. Brain Research Reviews 32, 4556.CrossRefGoogle ScholarPubMed
Dobrowolski, R., Sasse, P., Schrickel, J.W., Watkins, M., Kim, J.S., Rackauskas, M. et al. (2008) The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Human Molecular Genetics 17, 539554.CrossRefGoogle ScholarPubMed
Elfgang, C., Eckert, R., Lichtenberg-Frate, H., Butterweck, A., Traub, O., Klein, R.A. et al. (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. Journal of Cell Biology 129, 805817.CrossRefGoogle ScholarPubMed
Elias, L.A., Wang, D.D. and Kriegstein, A.R. (2007) Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448, 901907.CrossRefGoogle ScholarPubMed
Fenwick, A., Richardson, R.J., Butterworth, J., Barron, M.J. and Dixon, M.J. (2008) Novel mutations in GJA1 cause oculodentodigital syndrome. Journal of Dental Research 87, 10211026.CrossRefGoogle ScholarPubMed
Flenniken, A.M., Osborne, L.R., Anderson, N., Ciliberti, N., Fleming, C., Gittens, J.E. et al. (2005) A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 132, 43754386.CrossRefGoogle Scholar
Giaume, C., Fromaget, C., el Aoumari, A., Cordier, J., Glowinski, J. and Gros, D. (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6, 133143.CrossRefGoogle ScholarPubMed
Giepmans, B.N. and Moolenaar, W.H. (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Current Biology: CB 8, 931934.CrossRefGoogle Scholar
Gong, X.Q., Shao, Q., Lounsbury, C.S., Bai, D. and Laird, D.W. (2006) Functional characterization of a GJA1 frameshift mutation causing oculodentodigital dysplasia and palmoplantar keratoderma. Journal of Biological Chemistry 281, 3180131811.Google ScholarPubMed
Gutmann, D.H., Zackai, E.H., McDonald-McGinn, D.M., Fischbeck, K.H. and Kamholz, J. (1991) Oculodentodigital dysplasia syndrome associated with abnormal cerebral white matter. American Journal of Medical Genetics 41, 1820.CrossRefGoogle ScholarPubMed
Iacobas, D.A., Scemes, E. and Spray, D.C. (2004) Gene expression alterations in connexin null mice extend beyond the gap junction. Neurochemistry International 45, 243250.CrossRefGoogle ScholarPubMed
Kalcheva, N., Qu, J., Sandeep, N., Garcia, L., Zhang, J., Wang, Z. et al. (2007) Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia. Proceedings of the National Academy of Sciences of the U.S.A. 104, 2051220516.CrossRefGoogle Scholar
Koulakoff, A., Ezan, P. and Giaume, C. (2008) Neurons control the expression of connexin 30 and connexin 43 in mouse cortical astrocytes. Glia 56, 12991311.CrossRefGoogle ScholarPubMed
Kumar, N.M. and Gilula, N.B. (1996) The gap junction communication channel. Cell 84, 381388.CrossRefGoogle ScholarPubMed
Laing, J.G., Tadros, P.N., Westphale, E.M. and Beyer, E.C. (1997) Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Experimental Cell Research 236, 482492.CrossRefGoogle ScholarPubMed
Li, X., Ionescu, A.V., Lynn, B.D., Lu, S., Kamasawa, N., Morita, M. et al. (2004) Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience 126, 611630.CrossRefGoogle ScholarPubMed
Loddenkemper, T., Grote, K., Evers, S., Oelerich, M. and Stogbauer, F. (2002) Neurological manifestations of the oculodentodigital dysplasia syndrome. Journal of Neurology 249, 584595.CrossRefGoogle ScholarPubMed
Lutz, S.E., Zhao, Y., Gulinello, M., Lee, S.C., Raine, C.S. and Brosnan, C.F. (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. Journal of Neuroscience 29, 77437752.CrossRefGoogle ScholarPubMed
Maass, K., Ghanem, A., Kim, J.S., Saathoff, M., Urschel, S., Kirfel, G. et al. (2004) Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Molecular Biology of the Cell 15, 45974608.CrossRefGoogle ScholarPubMed
Manias, J.L., Plante, I., Gong, X.Q., Shao, Q., Churko, J., Bai, D. et al. (2008) Fate of connexin43 in cardiac tissue harbouring a disease-linked connexin43 mutant. Cardiovascular Research 80, 385395.CrossRefGoogle ScholarPubMed
Manthey, D., Banach, K., Desplantez, T., Lee, C.G., Kozak, C.A., Traub, O. et al. (2001) Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels. Journal of Membrane Biology 181, 137148.CrossRefGoogle ScholarPubMed
McLachlan, E., Manias, J.L., Gong, X.Q., Lounsbury, C.S., Shao, Q., Bernier, S.M. et al. (2005) Functional characterization of oculodentodigital dysplasia-associated Cx43 mutants. Cell Communication and Adhesion 12, 279292.CrossRefGoogle ScholarPubMed
Meme, W., Calvo, C.F., Froger, N., Ezan, P., Amigou, E., Koulakoff, A. et al. (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB Journal 20, 494496.CrossRefGoogle ScholarPubMed
Menichella, D.M., Goodenough, D.A., Sirkowski, E., Scherer, S.S. and Paul, D.L. (2003) Connexins are critical for normal myelination in the CNS. Journal of Neuroscience 23, 59635973.CrossRefGoogle ScholarPubMed
Musil, L.S. and Goodenough, D.A. (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74, 10651077.CrossRefGoogle ScholarPubMed
Nagy, J.I., Ionescu, A.V., Lynn, B.D. and Rash, J.E. (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44, 205218.CrossRefGoogle ScholarPubMed
Nagy, J.I., Patel, D., Ochalski, P.A. and Stelmack, G.L. (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88, 447468.CrossRefGoogle Scholar
Nagy, J.I. and Rash, J.E. (2003) Astrocyte and oligodendrocyte connexins of the glial syncytium in relation to astrocyte anatomical domains and spatial buffering. Cell Communication and Adhesion 10, 401406.CrossRefGoogle ScholarPubMed
Naus, C.C., Bechberger, J.F., Zhang, Y., Venance, L., Yamasaki, H., Juneja, S.C. et al. (1997) Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin43. Journal of Neuroscience Research 49, 528540.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Odermatt, B., Wellershaus, K., Wallraff, A., Seifert, G., Degen, J., Euwens, C. et al. (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. Journal of Neuroscience 23, 45494559.CrossRefGoogle ScholarPubMed
Orthmann-Murphy, J.L., Abrams, C.K. and Scherer, S.S. (2008) Gap junctions couple astrocytes and oligodendrocytes. Journal of Molecular Neuroscience 35, 101116.CrossRefGoogle ScholarPubMed
Orthmann-Murphy, J.L., Freidin, M., Fischer, E., Scherer, S.S. and Abrams, C.K. (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. Journal of Neuroscience 27, 1394913957.CrossRefGoogle ScholarPubMed
Paznekas, W.A., Boyadjiev, S.A., Shapiro, R.E., Daniels, O., Wollnik, B., Keegan, C.E. et al. (2003) Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. American Journal of Human Genetics 72, 408418.CrossRefGoogle ScholarPubMed
Paznekas, W.A., Karczeski, B., Vermeer, S., Lowry, R.B., Delatycki, M., Laurence, F. et al. (2009) GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Human Mutation 30, 724733.CrossRefGoogle Scholar
Peters, A., Palay, S.L. and Webster, H. (1991) The Fine Structure of the Nervous System, Neurons and Their Supporting Cells, 3rd edition. New York: Oxford University Press.Google Scholar
Plante, I. and Laird, D.W. (2008) Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. Developmental Biology 318, 312322.CrossRefGoogle Scholar
Rash, J.E., Yasumura, T., Davidson, K.G., Furman, C.S., Dudek, F.E. and Nagy, J.I. (2001) Identification of cells expressing Cx43, Cx30, Cx26, Cx32 and Cx36 in gap junctions of rat brain and spinal cord. Cell Communication & Adhesion 8, 315320.CrossRefGoogle ScholarPubMed
Retamal, M.A., Froger, N., Palacios-Prado, N., Ezan, P., Saez, P.J., Saez, J.C. et al. (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. Journal of Neuroscience 27, 1378113792.CrossRefGoogle ScholarPubMed
Richardson, R., Donnai, D., Meire, F. and Dixon, M.J. (2004) Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. Journal of Medical Genetics 41, 6067.CrossRefGoogle ScholarPubMed
de Roos, A.D., van Zoelen, E.J. and Theuvenet, A.P. (1996) Determination of gap junctional intercellular communication by capacitance measurements. Pflugers Archiv: European Journal of Physiology 431, 556563.CrossRefGoogle ScholarPubMed
Roscoe, W., Veitch, G.I., Gong, X.Q., Pellegrino, E., Bai, D., McLachlan, E. et al. (2005) Oculodentodigital dysplasia-causing connexin43 mutants are non-functional and exhibit dominant effects on wild-type connexin43. Journal of Biological Chemistry 280, 1145811466.CrossRefGoogle ScholarPubMed
Rouach, N., Koulakoff, A., Abudara, V., Willecke, K. and Giaume, C. (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322, 15511555.CrossRefGoogle ScholarPubMed
Saura, J. (2007) Microglial cells in astroglial cultures: a cautionary note. Journal of Neuroinflammation 4, 26.CrossRefGoogle ScholarPubMed
Shibayama, J., Paznekas, W., Seki, A., Taffet, S., Jabs, E.W., Delmar, M. et al. (2005) Functional characterization of connexin43 mutations found in patients with oculodentodigital dysplasia. Circulation Research 96, e83e91.CrossRefGoogle ScholarPubMed
Sohl, G. and Willecke, K. (2004) Gap junctions and the connexin protein family. Cardiovascular Research 62, 228232.CrossRefGoogle ScholarPubMed
Tong, D., Colley, D., Thoo, R., Li, T.Y., Plante, I., Laird, D.W. et al. (2009a) Oogenesis defects in a mutant mouse model of oculodentodigital dysplasia. Disease Models amd Mechanisms 2, 157167.CrossRefGoogle Scholar
Tong, D., Lu, X., Wang, H.X., Plante, I., Lui, E., Laird, D.W. et al. (2009b) A dominant loss-of-function GJA1 (Cx43) mutant impairs parturition in the mouse. Biology of Reproduction 80, 10991106.CrossRefGoogle ScholarPubMed
Vink, M.J., Suadicani, S.O., Vieira, D.M., Urban-Maldonado, M., Gao, Y., Fishman, G.I. et al. (2004) Alterations of intercellular communication in neonatal cardiac myocytes from connexin43 null mice. Cardiovascular Research 62, 397406.CrossRefGoogle ScholarPubMed
Wallraff, A., Kohling, R., Heinemann, U., Theis, M., Willecke, K. and Steinhauser, C. (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. Journal of Neuroscience 26, 54385447.CrossRefGoogle ScholarPubMed
Wiencken-Barger, A.E., Djukic, B., Casper, K.B. and McCarthy, K.D. (2007) A role for Connexin43 during neurodevelopment. Glia 55, 675686.CrossRefGoogle ScholarPubMed
Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Guldenagel, M. et al. (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biological Chemistry 383, 725737.CrossRefGoogle ScholarPubMed
Yamamoto, T., Ochalski, A., Hertzberg, E.L. and Nagy, J.I. (1990) On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. Journal of Comparative Neurology 302, 853883.CrossRefGoogle ScholarPubMed
Yum, S.W., Zhang, J., Valiunas, V., Kanaporis, G., Brink, P.R., White, T.W. et al. (2007) Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. American Journal of Physiology. Cell Physiology 293, C1032C1048.CrossRefGoogle ScholarPubMed
Zhuo, L., Sun, B., Zhang, C.L., Fine, A., Chiu, S.Y. and Messing, A. (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Developmental Biology 187, 3642.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Wasseff et al. supplementary material

figure 1

Download Wasseff et al. supplementary material(Image)
Image 1.2 MB
Supplementary material: Image

Wasseff et al. supplementary material

figure 2

Download Wasseff et al. supplementary material(Image)
Image 546.7 KB
Supplementary material: Image

Wasseff et al. supplementary material

figure 3

Download Wasseff et al. supplementary material(Image)
Image 1.3 MB
Supplementary material: Image

Wasseff et al. supplementary material

figure 4

Download Wasseff et al. supplementary material(Image)
Image 1.8 MB
Supplementary material: Image

Wasseff et al. supplementary material

figure 5

Download Wasseff et al. supplementary material(Image)
Image 1.3 MB
Supplementary material: Image

Wasseff et al. supplementary material

figure 6

Download Wasseff et al. supplementary material(Image)
Image 1.2 MB