Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T17:02:23.289Z Has data issue: false hasContentIssue false

Temporal evolution of the degree distribution of alters in growing networks

Published online by Cambridge University Press:  23 January 2018

BABAK FOTOUHI
Affiliation:
Program for Evolutionary Dynamics, Harvard University, Cambridge, MA, USA Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA, USA (e-mail: [email protected])
MICHAEL RABBAT
Affiliation:
Department of Electrical and Computer Engineering, McGill University, Montréal, QC, H3A 0E9, Canada (e-mail: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The degree distribution of the neighbors of nodes in a network is a theoretically important tool that is invoked in diverse studies in network science, such as epidemics, network resilience, network search and observability, network synchronization, random walks, opinion dynamics, and other dynamical systems on networks. Many real networks grow, and their properties pertaining to the said phenomena evolve. There is a paucity of theoretical research on how the evolution of these properties depend upon time and upon the structure of the initial network. This paper addresses this problem by providing the first theoretical study of the temporal evolution of the nearest-neighbor degree distribution for arbitrary networks (with any size) in arbitrary times. The posited results enable the analysis of the structural properties of growing networks in the short-time and intermediary time regimes, which are typically ignored in favor of the steady state. We corroborate the solutions via Monte Carlo simulations on various topologies. As a byproduct of the obtained solutions, we also demonstrate that the existing result in the literature on the asymptotic behavior of the Pearson coefficient of growing networks under the preferential attachment mechanism is incorrect, and we present the correct solution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

References

Albert, R., & Barabási, A. L. (2000). Topology of evolving networks: Local events and universality. Physical Review Letters, 85 (24), 5234.CrossRefGoogle ScholarPubMed
Apolloni, A., Poletto, C., Ramasco, J. J., Jensen, P., & Colizza, V. (2014). Metapopulation epidemic models with heterogeneous mixing and travel behaviour. Theoretical Biology and Medical Modelling, 11 (1), 3.CrossRefGoogle ScholarPubMed
Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286 (5439), 509512.CrossRefGoogle ScholarPubMed
Baronchelli, A., Catanzaro, M. & Pastor-Satorras, R. (2008). Random walks on complex trees. Physical Review E, 78 (1), 011114.CrossRefGoogle ScholarPubMed
Baronchelli, A. & Pastor-Satorras, R. (2010). Mean-field diffusive dynamics on weighted networks. Physical Review E, 82 (1), 011111.CrossRefGoogle ScholarPubMed
Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks (p. 193). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Barrat, A. & Pastor-Satorras, R. (2005). Rate equation approach for correlations in growing network models. Physical Review E, 71 (3), 036127.CrossRefGoogle ScholarPubMed
Bender, C., & Orszag, S. (1978). Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. New York: McGraw-Hill.Google Scholar
Bersini, H., Lenaerts, T., & Santos, F. C. (2006). Growing biological networks: Beyond the gene-duplication model. Journal of Theoretical Biology, 241 (3), 488505.CrossRefGoogle ScholarPubMed
Bhan, A., Galas, D. J., & Dewey, T. G. (2002). A duplication growth model of gene expression networks. Bioinformatics, 18 (11), 14861493.CrossRefGoogle ScholarPubMed
Boguná, M., Pastor-Satorras, R., & Vespignani, A. (2003). Epidemic spreading in complex networks with degree correlations. In Pastor-Satorras, R., Rubi, M., & Diaz-Guilera, A. (Eds.), Statistical mechanics of complex networks (p. 127). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Boguná, M., Pastor-Satorras, R., & Vespignani, A. (2004a). Cut-offs and finite size effects in scale-free networks. The European Physical Journal B: Condensed Matter and Complex Systems, 38 (2), 205209.CrossRefGoogle Scholar
Boguná, M., Pastor-Satorras, R., & Vespignani, A. (2004b). Cut-offs and finite size effects in scale-free networks. The European Physical Journal B: Condensed Matter and Complex Systems, 38 (2), 205209.CrossRefGoogle Scholar
Bollobás, B., et al. (2001). The degree sequence of a scale-free random graph process. Random Structures & Algorithms, 18 (3), 279290.CrossRefGoogle Scholar
Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., . . . Wiener, J. (2000). Graph structure in the web. Computer Networks, 33 (1), 309320.CrossRefGoogle Scholar
Brown, J. W., Churchill, R. V., & Lapidus, M. (1996). Complex variables and applications. New York: McGraw-Hill.Google Scholar
Chung, F., Lu, L., Dewey, T. G., & Galas, D. J. (2003). Duplication models for biological networks. Journal of Computational Biology, 10 (5), 677687.CrossRefGoogle ScholarPubMed
Colizza, V., & Vespignani, A. (2008). Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. Journal of Theoretical Biology, 251 (3), 450467.CrossRefGoogle Scholar
Dorogovtsev, S., Ferreira, A., Goltsev, A., & Mendes, J. (2010). Zero pearson coefficient for strongly correlated growing trees. Physical Review E, 81 (3), 031135.CrossRefGoogle ScholarPubMed
Dorogovtsev, S. N., & Mendes, J. F. (2002). Evolution of networks. Advances in Physics, 51 (4), 10791187.CrossRefGoogle Scholar
Dorogovtsev, S. N., Mendes, J. F. F., & Samukhin, A. N. (2000). Structure of growing networks with preferential linking. Physical Review Letters, 85, 4633.CrossRefGoogle ScholarPubMed
Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the internet topology. ACM SIGCOMM Computer Communication Review, 29, 251262.CrossRefGoogle Scholar
Ferreira, S. C., Ferreira, R. S. & Pastor-Satorras, R. (2011). Quasistationary analysis of the contact process on annealed scale-free networks. Physical Review E, 83 (6), 066113.CrossRefGoogle ScholarPubMed
Fortunato, S., Boguñá, M., Flammini, A., & Menczer, F. (2007). On local estimations of pagerank: A mean field approach. Internet Mathematics, 4 (2–3), 245266.CrossRefGoogle Scholar
Fortunato, S., Boguñá, M., Flammini, A., & Menczer, F. (2008). Approximating pagerank from in-degree. In Aiello, W., Broder, A., Janssen, J., & Milios, E. (Eds.), Proceedings of the 4th international workshop on algorithms and models for the web-graph, WAW'06 (pp. 5971). Springer.CrossRefGoogle Scholar
Fotouhi, B., & Rabbat, M. (2013a). Degree correlation in scale-free graphs. The European Physical Journal B, 86 (12), 119.CrossRefGoogle Scholar
Fotouhi, B., & Rabbat, M. (2013b). Network growth with arbitrary initial conditions: Degree dynamics for uniform and preferential attachment. Physical Review E, 88 (6), 062801.CrossRefGoogle ScholarPubMed
Goltsev, A., Dorogovtsev, S., & Mendes, J. (2008). Percolation on Correlated Networks. Physical Review E, 78, 051105.CrossRefGoogle ScholarPubMed
Hasegawa, T., Takaguchi, T., & Masuda, N. (2013). Observability transitions in correlated networks. Physical Review E, 88 (4), 042809.CrossRefGoogle ScholarPubMed
Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519 (3), 97125.CrossRefGoogle Scholar
Jin, E. M., Girvan, M., & Newman, M. E. (2001). Structure of growing social networks. Physical Review E, 64 (4), 046132.CrossRefGoogle ScholarPubMed
Krapivsky, P., & Redner, S. (2001). Organization of growing random networks. Physical Review E, 63 (6), 066123.CrossRefGoogle ScholarPubMed
Kumar, R., Novak, J., & Tomkins, A. (2010). Structure and evolution of online social networks. In Yu, P. S., Han, J., & Faloutsos, C. (Eds.), Link mining: models, algorithms, and applications (pp. 337357). New York, USA: Springer.CrossRefGoogle Scholar
Lee, H., Shim, P.-S., & Noh, J. (2013). Epidemic threshold of susceptible-infected-susceptible model on complex networks. Physical Review E, 87, 062812.CrossRefGoogle ScholarPubMed
Marshak, C. Z., Rombach, M. P., Bertozzi, A. L. & D'Orsogna, M. R. (2016). Growth and containment of a hierarchical criminal network. Physical Review E, 93 (2), 022308.CrossRefGoogle ScholarPubMed
Morse, P. M., & Feshbach, H. (1953). Methods in theoretical physics, vol. II. New York: McGraw-Hill, (chap. 4).Google Scholar
Newman, M. E. (2002). Assortative mixing in networks. Physical Review Letters, 89 (20), 208701.CrossRefGoogle ScholarPubMed
Newman, M. E. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101 (Suppl. 1), 52005205.CrossRefGoogle ScholarPubMed
Newman, M. E. (2010). Networks: An introduction. New York, NY, USA: Oxford University Press.CrossRefGoogle Scholar
Noh, J. D. (2008). Loop statistics in complex networks. The European Physical Journal B, 66 (2), 251257.CrossRefGoogle Scholar
Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95 (1), 215233.CrossRefGoogle Scholar
Pagani, G. A., & Aiello, M. (2014). Power grid complex network evolutions for the smart grid. Physica A: Statistical Mechanics and its Applications, 396, 248266.Google Scholar
Peruani, F. (2009). Advances in the theory of complex networks. In Ganguly, N., Deutsch, A., & Mukherjee, A. (Eds.), Dynamics on and of complex networks (p. 275). Boston, Birkhäuser.CrossRefGoogle Scholar
Prakash, B. A., Chakrabarti, D., Faloutsos, M., Valler, N., & Faloutsos, C. (2010). Got the flu (or mumps)? Check the eigenvalue! arXiv:1004.0060.Google Scholar
Price, D. d. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27 (5), 292306.CrossRefGoogle Scholar
Pugliese, E., & Castellano, C. (2009). Heterogeneous pair approximation for voter models on networks. Europhysics Letters, 88 (5), 58004.CrossRefGoogle Scholar
Restrepo, J. G., Ott, E., & Hunt, B. R. (2005). Onset of synchronization in large networks of coupled oscillators. Physical Review E, 71 (3), 036151.CrossRefGoogle ScholarPubMed
Restrepo, J. G., Ott, E., & Hunt, B. R. (2006). Emergence of coherence in complex networks of heterogeneous dynamical systems. Physical Review Letters, 96 (25), 254103.CrossRefGoogle ScholarPubMed
Restrepo, J. G., Ott, E., & Hunt, B. R. (2007). Approximating the largest eigenvalue of network adjacency matrices. Physical Review E, 76 (5), 056119.CrossRefGoogle ScholarPubMed
Van Mieghem, P. (2012). Epidemic phase transition of the sis type in networks. Europhysics Letters, 97 (4), 48004.CrossRefGoogle Scholar
Vázquez, A., & Moreno, Y. (2003). Resilience to Damage of Graphs with Degree Correlations. Physical Review E, 67 (1), 015101.CrossRefGoogle ScholarPubMed
Vazquez, F. & Eguíluz, V. M. (2008). Analytical solution of the voter model on uncorrelated networks. New Journal of Physics, 10 (6), 063011.CrossRefGoogle Scholar
Zhang, L., Zou, Y., Guan, S., & Liu, Z. (2015). Analytical description for the critical fixations of evolutionary coordination games on finite complex structured populations. Physical Review E, 91 (4), 042807.CrossRefGoogle ScholarPubMed
Zwillinger, D. (1998). Handbook of differential equations. San Diego, CA: Academic Press.Google Scholar