Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T20:36:06.094Z Has data issue: false hasContentIssue false

Symmetry in cancer networks identified: Proposal for multicancer biomarkers

Published online by Cambridge University Press:  26 December 2019

Pramod Shinde
Affiliation:
Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India (emails: [email protected], [email protected]),
Loïc Marrec
Affiliation:
CNRS, Laboratoire Jean Perrin (UMR 8237), Sorbonne Université, Paris F-75005, France (email: [email protected]),
Aparna Rai
Affiliation:
Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India (emails: [email protected], [email protected]),
Alok Yadav
Affiliation:
Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India (email: [email protected]),
Rajesh Kumar
Affiliation:
Discipline of Physics, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India (email: [email protected]),
Mikhail Ivanchenko
Affiliation:
Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia (email: [email protected]),
Alexey Zaikin
Affiliation:
Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia (email: [email protected]), Department of Mathematics and Institute for Womens Health, University College London, London, WC1E 6BT, UK and Department of Pediatrics, Faculty of Pediatrics, Sechenov University, Moscow, Russia (email: [email protected])
Sarika Jalan*
Affiliation:
Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India (emails: [email protected], [email protected]), Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Khandwa road, Simrol, Indore 453552, India (email: [email protected]), Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia (email: [email protected]),
*
*Corresponding author. Email: [email protected]

Abstract

One of the most challenging problems in biomedicine and genomics is the identification of disease biomarkers. In this study, proteomics data from seven major cancers were used to construct two weighted protein–protein interaction networks, i.e., one for the normal and another for the cancer conditions. We developed rigorous, yet mathematically simple, methodology based on the degeneracy at –1 eigenvalues to identify structural symmetry or motif structures in network. Utilizing eigenvectors corresponding to degenerate eigenvalues in the weighted adjacency matrix, we identified structural symmetry in underlying weighted protein–protein interaction networks constructed using seven cancer data. Functional assessment of proteins forming these structural symmetry exhibited the property of cancer hallmarks. Survival analysis refined further this protein list proposing BMI, MAPK11, DDIT4, CDKN2A, and FYN as putative multicancer biomarkers. The combined framework of networks and spectral graph theory developed here can be applied to identify symmetrical patterns in other disease networks to predict proteins as potential disease biomarkers.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A., Sarkar, C., Dwivedi, S. K., Dhasmana, N., & Jalan, S. (2014). Quantifying randomness in protein-protein interaction networks of different species: A random matrix approach. Physica A, 404, 359367.CrossRefGoogle Scholar
Aguirre-Gamboa, R., Gomez-Rueda, H., Martnez-Ledesma, E., Martnez-Torteya, A., Chacolla-Huaringa, R., Rodriguez-Barrientos, A., … Trevino, V. (2013). SurvExpress: An online biomarker validation tool and database for cancer gene expression data using survival analysis. PloS One, 8(9), 74250.CrossRefGoogle ScholarPubMed
Ahn, J., Yoon, Y., Park, C., Shin, E., & Park, S. (2011). Integrative gene network construction for predicting a set of complementary prostate cancer genes. Bioinformatics, 27(13), 18461853.CrossRefGoogle ScholarPubMed
Albert, R., & Barabási, AL. (2002). Statistical mechanics of complex networks. Review of Modern Physics, 74(1), 47.CrossRefGoogle Scholar
Barabasi, A. L., & Otavi, Z. N. (2004). Network biology: Understanding the cells functional organization. Nature Review Genetics, 5, 101113.CrossRefGoogle Scholar
Barh, D., Carpi, A., Verma, M., & Gunduz, M. (2014). Cancer biomarkers: Minimal and noninvasive early diagnosis and prognosis. Florida, USA: CRC Press.CrossRefGoogle Scholar
Brandes, U. (2008). On variants of shortest-path betweenness centrality and their generic computation. Social Networks, 30(2), 136145.CrossRefGoogle Scholar
Brockmoller, S. F., Bucher, E., Muller, B. M., Budczies, J., Hilvo, M., Griffin, J. L., … Darb-Esfahani, S. (2011). Integration of metabolomics and expression of Glycerol-3-phosphate Acyltransferase (GPAM) in breast cancer link to patient survival, hormone receptor status, and metabolic profiling. Journal of Proteome Research, 11(2), 850860.CrossRefGoogle ScholarPubMed
Cubuk, C., Hidalgo, M. R., Amadoz, A., Pujana, M. A., Mateo, F., Herranz, C., … Dopazo, J. (2018). Gene expression integration into pathway modules reveals a pan-cancer metabolic landscape. Cancer Research, 78(21), 60596072.CrossRefGoogle ScholarPubMed
Cheng, F., Chuang, L., Bairong, S., & Zhongming, Z. (2016). Investigating cellular network heterogeneity and modularity in cancer: A network entropy and unbalanced motif approach. BMC Systems Biology, 10(3), 65.CrossRefGoogle ScholarPubMed
Chiang, G. G., & Abraham, R. T. (2007). Targeting the mTOR signaling network in cancer. Trends in Molecular Medicine, 13(10), 433442.CrossRefGoogle Scholar
Chung, F., Linyuan, L., & Van, V. (2003). Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences, 100, 63136318.CrossRefGoogle Scholar
Cragg, J. G., & Donald, S. G. (1997). Inferring the rank of a matrix. Journal of Economics, 76(1), 223250.CrossRefGoogle Scholar
Dixit, A., Yi, L., Gowthaman, R., Torkamani, A., Schork, N.J. & Verkhivker, G.M. (2009). Sequence and structure signatures of cancer mutation hotspots in protein kinases. PloS One, 4(10), e7485.CrossRefGoogle ScholarPubMed
Elias, D., & Ditzel, H. J. (2015). Fyn is an important molecule in cancer pathogenesis and drug resistance. Pharmacological Research, 100, 250254.CrossRefGoogle ScholarPubMed
Figshare data: https://dx:doi.org/10.6084/m9.figshare.4193409.v1Google Scholar
Folador, E. L., de Carvalho, P. V., Silva, W. M., Ferreira, R. S., Silva, A., Gromiha, M., … Röttger, R. (2016). In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks. BMC Systems Biology, 10(1), 103.CrossRefGoogle ScholarPubMed
Fox, A. D., Hescott, B. J., Blumer, A. C., & Slonim, D. K. (2011). Connectedness of PPI network neighborhoods identifies regulatory hub proteins. Bioinformatics, 27(8), 11351142.CrossRefGoogle ScholarPubMed
Furlong, L. I. (2013). Human diseases through the lens of network biology. Trends in Genetics, 29(3), 150159.CrossRefGoogle ScholarPubMed
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646674.CrossRefGoogle ScholarPubMed
He, Z., He, J., Liu, Z., Xu, J., Sofia, F. Y., Liu, H., & Yang, J. (2014). MAPK11 in breast cancer cells enhances osteoclastogenesis and bone resorption. Biochimie, 106, 2432.CrossRefGoogle ScholarPubMed
Jalan, S., Ung, C. Y., Bhojwani, J., Li, B., Zhang, L., Lan, S. H., & Gong, Z. (2012). Spectral analysis of gene co-expression network of Zebrafish. EPL, 99(4), 48004.CrossRefGoogle Scholar
Kim, M. S., Kim, J. R., Kim, D., Lander, A. D., & Cho, K. H. (2012). Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster. BMC Systems Biology, 6(1), 31.CrossRefGoogle ScholarPubMed
Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature, 426(6964), 282285.CrossRefGoogle ScholarPubMed
Lage, K., Karlberg, E. O., Stø rling, Z. M., Olason, P. I., Pedersen, A. G., Rigina, O., … Moreau, Y. (2007). A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature Biotechnology, 25(3), 309.CrossRefGoogle ScholarPubMed
Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 17391740.CrossRefGoogle ScholarPubMed
Marrec, L., & Jalan, S. (2017). Analysing degeneracies in networks spectra. EPL, 117(4), 48001.CrossRefGoogle Scholar
Mi, H., Lazareva-Ulitsky, B., Loo, R., Kejariwal, A., Vandergriff, J., Rabkin, S., … Kitano, H. (2005). The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Research, 33, D284D288.CrossRefGoogle ScholarPubMed
Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., … Alon, U. (2004). Superfamilies of evolved and designed networks. Science, 303(5663), 15381542.CrossRefGoogle ScholarPubMed
Nacerddine, K., Beaudry, J. B., Ginjala, V., Westerman, B., Mattiroli, F., Song, J. Y., … Zevenhoven, J. (2012). Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. Journal of Clinical Investigation, 122(5), 1920.CrossRefGoogle ScholarPubMed
Ocone, A. & Sanguinetti, G. (2011). Reconstructing transcription factor activities in hierarchical transcription network motifs. Bioinformatics, 27(20), 28732879.CrossRefGoogle ScholarPubMed
Perrault, R., Wang, H., Wang, M., Rosidi, B. & Iliakis, G. (2004). Backup pathways of NHEJ are suppressed by DNAPK. Journal of Cellular Biochemistry, 92(4), 781794.CrossRefGoogle Scholar
Pinto, J. A., Rolfo, C., Raez, L. E., Prado, A., Araujo, J. M., Bravo, L., … Mas, L. A. (2017). In silico evaluation of DNA Damage Inducible Transcript 4 gene (DDIT4) as prognostic biomarker in several malignancies. Scientific Reports, 7, article number 1526.CrossRefGoogle Scholar
Potestio, R., Caccioli, F., & Vivo, P. (2009). Random matrix approach to collective behavior and bulk universality in protein dynamics. Physical Review Letters, 103(26), 268101.CrossRefGoogle ScholarPubMed
Rai, A., Menon, A. V., & Jalan, S. (2014). Randomness and preserved patterns in cancer network. Scientific Reports, 4, 6368.CrossRefGoogle ScholarPubMed
Rai, A., Pawar, A. K., & Jalan, S. (2015). Prognostic interaction patterns in diabetes mellitus II: A random-matrix-theory relation. Physical Review E, 92(2), 022806.CrossRefGoogle ScholarPubMed
Rai, A., Shinde, P. & Jalan, S. (2018). Network spectra for drug-target identification in complex diseases: New guns against old foes. Applied Network Science, 3(1), 51.CrossRefGoogle ScholarPubMed
Sarkar, C., & Jalan, S. (2017). Complex networks: An emerging branch of science. Physics News, 47, 34, and references therein.Google Scholar
Sarkar, C., & Jalan, S. (2018). Spectral properties of complex networks. Chaos, 28(10), 102101, and references therein.CrossRefGoogle ScholarPubMed
Saramäki, J., Kivel, ä M., Onnela, J. P., Kaski, K., & Kertész, J. (2007). Generalizations of the clustering coefficient to weighted complex networks, Physical Review E, 75, 027105.CrossRefGoogle ScholarPubMed
Shinde, P., Yadav, A., Rai, A., & Jalan, S. (2015). Dissortativity and duplications in oral cancer. European Physical Journal B, 88(8), 197.CrossRefGoogle Scholar
Shinde, P., & Jalan, S. (2015). A multilayer protein-protein interaction network analysis of different life stages in Caenorhabditis elegans. EPL, 112(5), 58001.CrossRefGoogle Scholar
Shinde, P., Sarkar, C., & Jalan, S. (2018). Codon based co-occurrence network motifs in human mitochondria. Scientific Reports, 8(1), 3060.CrossRefGoogle ScholarPubMed
Shinde, P., Whitwell, H. J., Verma, R. K., Zaikin, A. & Jalan, S. (2018). Impact of mitochondrial epistatic interactions on evolution of different human subpopulations. BioRxiv, 505818.Google Scholar
Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458, 719724.CrossRefGoogle ScholarPubMed
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., … Kuhn, M. (2014). STRING v10: Protein-Protein interaction networks, integrated over the tree of life. Nucleic Acids Research, 43, D447D452.CrossRefGoogle ScholarPubMed
Teichmann, S. A., & Babu, M. M. (2004). Gene regulatory network growth by duplication. Nature genetics, 36(5), 492.CrossRefGoogle ScholarPubMed
Ushioda, R., Hoseki, J. & Nagata, K. (2013). Glycosylation-independent ERAD pathway serves as a backup system under ER stress. Molecular Biology of the Cell, 24(20), 31553163.CrossRefGoogle ScholarPubMed
Van Mieghem, P. (2010). Graph spectra for complex networks. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Wang, J., Huang, Y., Wu, F. X., & Pan, Y. (2012). Symmetry compression method for discovering network motifs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(6), 17761789.CrossRefGoogle ScholarPubMed
Winter, D. L., Erce, M. A., & Wilkins, M. R. (2014). A web of possibilities: Network-based discovery of protein interaction codes. Journal of Proteome Research, 13(12), 53335338.CrossRefGoogle ScholarPubMed
Yadav, A. & Jalan, S. (2015). Origin and implications of zero degeneracy in networks spectra. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(4), 043110.CrossRefGoogle ScholarPubMed
Yixuan, Y., Kiat, L. S., Yee, C. L., Huiyin, L., Yunhao, C., Kuan, C. P., … Pin, L. Y. (2010). Cathepsin S mediates gastric cancer cell migration and invasion via a putative network of metastasis-associated proteins. Journal of Proteome Research, 9(9), 47674778.CrossRefGoogle Scholar
Yu, X., Li, Z., & Shen, J. (2016). BRD7: A novel tumor suppressor gene in different cancers. American Journal of Translational Research, 8(2), 742.Google ScholarPubMed
Zack, T. I., Schumacher, S. E., Carter, S. L., Cherniack, A. D., Saksena, G., Tabak, B., … Sougnez, C. (2013). Pan-cancer patterns of somatic copy number alteration. Nature Genetics, 45(10), 1134.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Shinde et al. supplementary material

Shinde et al. supplementary material

Download Shinde et al. supplementary material(PDF)
PDF 7.1 MB