Published online by Cambridge University Press: 23 September 2019
In the context of a motivating study of dynamic network flow data on a large-scale e-commerce website, we develop Bayesian models for online/sequential analysis for monitoring and adapting to changes reflected in node–node traffic. For large-scale networks, we customize core Bayesian time series analysis methods using dynamic generalized linear models (DGLMs). These are integrated into the context of multivariate networks using the concept of decouple/recouple that was recently introduced in multivariate time series. This method enables flexible dynamic modeling of flows on large-scale networks and exploitation of partial parallelization of analysis while maintaining coherence with an over-arching multivariate dynamic flow model. This approach is anchored in a case study on Internet data, with flows of visitors to a commercial news website defining a long time series of node–node counts on over 56,000 node pairs. Central questions include characterizing inherent stochasticity in traffic patterns, understanding node–node interactions, adapting to dynamic changes in flows and allowing for sensitive monitoring to flag anomalies. The methodology of dynamic network DGLMs applies to many dynamic network flow studies.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.