Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T00:29:09.320Z Has data issue: false hasContentIssue false

Towards a process-based model to predict dune erosion along the Dutch Wadden coast

Published online by Cambridge University Press:  24 March 2014

B.G. Ruessink*
Affiliation:
Department of Physical Geography, Institute for Marine and Atmospheric Research Utrecht, Faculty of Geosciences, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, the Netherlands
M. Boers
Affiliation:
Deltares, P.O. Box 177, NL-2600 MH Delft, the Netherlands
P.F.C. van Geer
Affiliation:
Deltares, P.O. Box 177, NL-2600 MH Delft, the Netherlands
A.T.M. de Bakker
Affiliation:
Department of Physical Geography, Institute for Marine and Atmospheric Research Utrecht, Faculty of Geosciences, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, the Netherlands
A. Pieterse
Affiliation:
Department of Physical Geography, Institute for Marine and Atmospheric Research Utrecht, Faculty of Geosciences, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, the Netherlands
F. Grasso
Affiliation:
Department of Physical Geography, Institute for Marine and Atmospheric Research Utrecht, Faculty of Geosciences, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, the Netherlands
R.C. de Winter
Affiliation:
Department of Physical Geography, Institute for Marine and Atmospheric Research Utrecht, Faculty of Geosciences, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An equilibrium dune-erosion model is used every six years to assess the capability of the most seaward dune row on the Dutch Wadden islands to withstand a storm with a 1 in 10,000 probability for a given year. The present-day model is the culmination of numerous laboratory experiments with an initial cross-shore profile based on the central Netherlands coast. Large parts of the dune coast of the Wadden islands have substantially different dune and cross-shore profile characteristics than found along this central coast, related to the presence of tidal channels, ebb-tidal deltas, beach-plains and strong coastal curvature. This complicated coastal setting implies that the predictions of the dune-erosion model are sometimes doubtful; accordingly, a shift towards a process-based dune-erosion model has been proposed. A number of research findings based on recent laboratory and field studies highlight only few of the many challenges that need to be faced in order to develop and test such a model. Observations of turbulence beneath breaking waves indicate the need to include breaking-wave effects in sand transport equations, while current knowledge of infragravity waves, one of the main sand transporting mechanisms during severe storm conditions, is strongly challenged by laboratory and field observations on gently sloping beaches that are so typical of the Wadden islands. We argue that in-situ and remote-sensing field observations, laboratory experiments and numerical models need to be the pillars of Earth Scientific research in the Wadden Sea area to construct a meaningful process-based dune-erosion tool.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Boers, M., Diermanse, F. & Van Dongeren, A., 2011. Flood hazard maps in coastal areas. In: Proceedings of CoastGIS 2011, Vol. 4: 6774.Google Scholar
Carter, R.W.G. & Stone, G.W., 1989. Mechanisms associated with the erosion of sand dune cliffs, Magilligan, Northern Island. Earth Surface Processes and Landforms 14: 110.Google Scholar
Coeveld, E.M., Den Heijer, C., Van de Graaff, J., De Vroeg, J.H. & Steetzel, H.J., 2005. The effect of wave period on dune erosion. In: Proceedings Coastal Dynamics'95. ASCE, New York, 11 pp.Google Scholar
De Bakker, A.T.M., 2011. Infragravity waves: propagation, dissipation and sediment transport in the inner surf zone of a low sloping beach. MSc thesis, Utrecht University, 84 pp.Google Scholar
Deigaard, R., Fredsøe, J. & Brøker-Hedegaard, I., 1986. Suspended sediment in the surf zone. Journal of Waterways, Port, Coastal and Ocean Engineering, 112: 115127.Google Scholar
Deltares, , 2007. Dune erosion. Product 3: Probabilistic dune erosion prediction method. Report H4357/A1414, 86 pp.Google Scholar
Diermanse, F., Walstra, D.J., Smale, A., Van Geer, P. & Huisman, B., 2011. Detailtoets voor duinafslag. Afleiden van de rekenregel ten behoeve van WTI 2011. Deltares Report 1202124-003-HYE-0001, 126 pp. (In Dutch)Google Scholar
ENW, 2006. Technisch Rapport Duinafslag. Beoordeling van de veiligheid van duinen als waterkering ten behoeve van Voorschrift Toetsing op Veligheid 2006. Lecturis, Eindhoven, 59 pp. (In Dutch)Google Scholar
Feddersen, F., Trowbridge, J.H. & Williams, A.J. III, 2007. Vertical structure of dissipation in the nearshore. Journal of Physical Oceanography 37: 17641777.Google Scholar
Feddersen, F., 2010. Quality controlling surfzone acoustic doppler velocimeter observations to estimate the turbulent dissipation rate. Journal of Atmospheric and Oceanic Technology 27: 20392055.CrossRefGoogle Scholar
Gautier, C. & Van der Westhuyzen, A., 2010. Wave propagation under the influence of currents. Deltares Report 1202119-001-HYE-0002, 129 pp.Google Scholar
Henderson, S.M., Elgar, S. & Bowen, A.J., 2000. Observations of surfbeat propagation and energetics. In: Proceedings 27th International Conference on Coastal Engineering. ASCE, New York: 14121421.Google Scholar
Hoonhout, B., Van Geer, P., McCall, R. & Boers, M., 2010a. Duinafslag en -overslag bij brede stranden. Deel A: toepasbaarheid van DUROS bij kustprofielen met een breed strand. Deltares Report 1202124-007-HYE-0002, 20 pp. (In Dutch)Google Scholar
Hoonhout, B., Van Geer, P. & McCall, R., 2010b. Dune erosion and overwash at wide beaches. Part B: measurement results of experiments in the Scheldt Flume. Deltares Report 1202124-007-HYE-0001, 169 pp.Google Scholar
Huisman, B.J.A., De Grave, P., Diermanse, F.L.M., Walstra, D.J.R. & Van Thiel de Vries, J.S.M., 2010. Ontwikkeling detailtoets duinen 2011 (D++). Deltares Report 1202124-003-HYE-0004, 125 pp. (In Dutch)Google Scholar
Larson, M. & Kraus, N.C., 1989. SBEACH: numerical model for simulating storminduced beach change. Report 1. Empirical foundation and model development. US Army Corps of Engineers Technical Report CERC-89-9, US Army Engineer Waterways Experiment Station, Vicksburg, MS.Google Scholar
Larson, M., Erikson, L. & Hanson, H., 2004. An analytical model to predict dune erosion due to wave impact. Coastal Engineering 51: 675696.Google Scholar
McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N.G., Van Dongeren, A.R., Roelvink, J.A., Thompson, D.M. & Reniers, A.J.H.M., 2010. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coastal Engineering 57: 668683.Google Scholar
McNinch, J.E., 2004. Geologic control in the nearshore: shore-oblique sandbars and shoreline erosional hotspots, Mid-Atlantic Bight, USA. Marine Geology 211: 121141.Google Scholar
Mocke, G.P., 2011. Structure and modeling of surf zone turbulence due to wave breaking. Journal of Geophysical Research, 106: 17,03917,057.Google Scholar
Nadaoka, K. &. Kondoh, T., 1982. Laboratory measurements of velocity field structure in the surf zone by LDV. Coastal Engineering in Japan 25:125145.Google Scholar
Nadaoka, K., Ueno, S. & Igarashi, T., 1988. Sediment suspension due to large scale eddies in the surf zone. In: Proceedings of the 21st Conference on Coastal Engineering. ASCE, New York: 16461660.Google Scholar
Nishi, R. & Kraus, N.C., 1996. Mechanism and calculation of sand dune erosion by storms. In: Proceedings of the 25th Conference on Coastal Engineering. ASCE, New York: 30343047.Google Scholar
Overton, M.F., Pratikto, W.A., Lu, J.C. & Fisher, J.S., 1994. Laboratory investigation of dune erosion as a function of sand grain size and dune density. Coastal Engineering 23: 151165.CrossRefGoogle Scholar
Pieterse, A., 2011. Downward spreading of turbulence beneath breaking waves and its influence on sediment suspension. MSc thesis, Utrecht University, the Netherlands, 98 pp.Google Scholar
Price, T.D. & Ruessink, B.G., 2008. Morphodynamic zone variability on a microtidal barred beach. Marine Geology 251: 98–10.CrossRefGoogle Scholar
Ribberink, J.S., 1998. Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Engineering 34: 5962.Google Scholar
Roelvink, J.A. & Stive, M.J.F., 1989. Bar-generating cross-shore flow mechanisms on a beach. Journal of Geophysical Research, 94: 47855800.CrossRefGoogle Scholar
Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel de Vries, J., McCall, R. & Lescinski, J., 2009. Modeling storm impacts on beaches, dunes and barrier islands. Coastal Engineering 56: 11331152.CrossRefGoogle Scholar
Ruessink, B.G., 1998. The temporal and spatial variability of infragravity waves in a barred nearshore zone. Continental Shelf Research 18: 585605.Google Scholar
Ruessink, B.G., Kleinhans, M.G. & Van den Beukel, P.G.L., 1998a. Observations of swash under highly dissipative conditions. Journal of Geophysical Research 103: 31113118.Google Scholar
Ruessink, B.G., Houwman, K.T. & Hoekstra, P., 1998b. The systematic contribution of transporting mechanisms to the cross-shore sediment transport in water depths of 3 to 9 m. Marine Geology 152: 295324.Google Scholar
Ruessink, B.G., Miles, J.R., Feddersen, F., Guza, R.T. & Elgar, S., 2001. Modeling the alongshore current on barred beaches. Journal of Geophysical Research 106: 2245122464.Google Scholar
Ruessink, B.G. & Jeuken, M.C.J.L., 2002. Dunefoot dynamics along the Dutch coast. Earth surface processes and landforms 27: 10431056.Google Scholar
Ruessink, B.G., 2010. Observations of turbulence within a natural surf zone. Journal of Physical Oceanography 40: 26962712.CrossRefGoogle Scholar
Ruggiero, P., Holman, R.A. & Beach, R.A., 2004. Wave runup on a high-energy dissipative beach, Journal of Geophysical Research 109: C06025, doi:10.1029/2003JC002160.Google Scholar
Russell, P., 1993. Mechanisms for beach erosion during storms. Continental Shelf Research 13: 12431265.Google Scholar
Schupp, C.A., McNinch, J.E. & List, J.H., 2006. Nearshore shore-oblique bars, gravel outcrops, and their correlation to shoreline change. Marine Geology 233: 6379.Google Scholar
Sénéchal, N., Abadie, S., Gallagher, E., MacMahan, J., Masselink, G., Michallet, H., Reniers, A., Ruessink, G. Russell, P., Sous, D., Turner, I., Ardhuin, F., Bonneton, P., Bajun, S., Capo, S., Certain, R., Pedreros, R. & Garlan, T., 2011. The ECORS-Truc Vert 2008 nearshore field experiment: presentation of a three-dimensional morphologic system in a macrotidal environment during consecutive extreme storm conditions. Ocean Dynamics, 61: 20732098.CrossRefGoogle Scholar
Sheremet, A., Guza, R.T. Elgar, S. & Herbers, T.H.C., (2002), Observations of nearshore infragravity waves: 1. Seaward and shoreward propagating components, Journal of Geophysical Research, 107: 3095, doi:10.1029/2001JC000970.CrossRefGoogle Scholar
Short, A.D., 1992. Beach systems of the central Netherlands coast: processes, morphology and structural impacts in a storm driven multi-bar system. Marine Geology 107: 103132.Google Scholar
Silva, P.A., Temperville, A. & Santos, F.S., 2006. Sand transport under combined current and wave conditions: a semi-unsteady, practical model. Coastal Engineering 53: 897913.CrossRefGoogle Scholar
Steetzel, H.J., 1993. Cross-shore transport during storm surges. Ph.D. thesis, Delft University of Technology, Delft, the Netherlands.Google Scholar
Steetzel, H.J., 2002. Effect van zwaardere golfcondities op duinenkust. Verkenning effect grotere golfhoogte en langere golfperiode op mate duinafslag en veiligheid duinenkust. Alkyon Report A963. (In Dutch)Google Scholar
Swinkels, C.M., 2010. Storm hindcast January 2010. Analysis of the application of radar current data for hindcast purposes. Deltares Report 1202119-001-HYE-0003, 36 pp.Google Scholar
Thomson, J., Elgar, S., Raubenheimer, B., Herbers, T.H.C. & Guza, R.T., 2006. Tidal modulation of infragravity waves via nonlinear energy losses in the surfzone, Geophysical Research Letters, 33: L05601, doi:10.1029/2005GL025514.Google Scholar
TAW, 1995. Basisrapport Zandige Kust behorende bij de leidraad Zandige Kust. Technische Adviescommissie voor de Waterkeringen, Delft, 507 pp. (In Dutch)Google Scholar
Van Alphen, J.S.L.J. & Damoiseaux, M.A., 1987. A morphological map of the Dutch shoreface and adjacent part of the continental shelf (1: 250,000). Rijkswaterstaat. Nota NZ-N-87.21/MDLK-R-87.18, 20 pp.Google Scholar
Van de Graaff, J., 1977. Dune erosion during a storm. Coastal Engineering 1:99134.Google Scholar
Van de Graaff, J., 1986. Probabilistic design of dunes; an example from the Netherlands. Coastal Engineering 9: 479500.Google Scholar
Van Dongeren, A.R., Battjes, J.A., Janssen, T.T., Van Noorloos, J., Steenhauer, K., Steenbergen, G. & Reniers, A.J.H.M., 2007. Shoaling and dissipation of low-frequency waves. Journal of Geophysical Research 112: C02011, doi:10.1029/2006JC003701.Google Scholar
Van Gent, M.R.A., Van Thiel de Vries, J.S.M., Coeveld, E.M., De Vroeg, J.H., & Van de Graaff, J., 2008. Large-scale dune erosion tests to study the influence of wave periods. Coastal Engineering 55: 10411051.Google Scholar
Van Rijn, L.C., Tonnon, P.K., Sánchez-Arcilla, A., Cáceres, I. & Grüne, J., 2011. Scaling laws for beach and dune erosion processes. Coastal Engineering 58:623636.Google Scholar
Van der Vegt, M., Hoekstra, P. & Van Puijvelde, S.P., 2009. Channel migration in a small tidal inlet. In: Proceedings of the 6th IAHR symposium on River, Coastal and Estuarine Morphodynamics: 169176.Google Scholar
Van Thiel de Vries, J.S.M., Van Gent, M.R.A., Walstra, D.J.R. & Reniers, A.J.H.M., 2008. Analysis of dune erosion processes in large-scale flume experiments. Coastal Engineering 55:10281040.Google Scholar
Vellinga, P., 1982. Beach and dune erosion during storm surges. Coastal Engineering 6: 361387.Google Scholar
Vellinga, P., 1983. Predictive computational model for beach and dune erosion during storm surges. In: Proceedings Coastal Structures'83. ASCE, New York: 806819.Google Scholar
Vellinga, P., 1986. Beach and dune erosion during storm surges. Ph.D. thesis, Delft University of Technology, Delft, the Netherlands, 200 pp.Google Scholar
Walstra, D.J.R., Diermanse, F.L.M., Van Geer, P.F.C., Van Thiel de Vries, J.S.M. & Van de Graaff, J., 2008. SBWDuinen2-Ontwikkeltraject. Eerste aanzet tot de ontwikkeling van het 2011 Duintoetsinstrumentarium. Deltares Report H5019.20, 145 pp. (In Dutch)Google Scholar