Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T21:01:13.878Z Has data issue: false hasContentIssue false

Stable oxygen isotope record of the Eocene-Oligocene transition in the southern North Sea Basin: positioning the Oi-1 event

Published online by Cambridge University Press:  01 April 2016

E. De Man*
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
L. Ivany
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, USA
N. Vandenberghe
Affiliation:
Historical Geology K.U. Leuven, Redingenstraat 16, B-3000 Leuven, Belgium
*
1[email protected](corresponding author)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Preliminary stable oxygen isotope data are presented from the southern North Sea Basin successions, ranging from the Lutetian to Rupelian. Analyses were performed on fish otoliths, nuculid bivalves and benthic foraminifera and are presented as bulk δ18O values relative to a well established regional sequence stratigraphic framework. The most significant positive shift in δ18O values clearly falls at the top of the regionally recognised Bassevelde 3 sequence, which base corresponds to the Eocene-Oligocene GSSP boundary. The here documented δ18O shift is closely associated with the base of the traditional Rupelian unit-stratotype and is tentatively correlated to the globally recognised Oi-1 event.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Abreu, V.S. & Anderson, J.B., 1998. Glacial eustasy during the Cenozoic: sequence stratigraphic implications. AAPG Bulletin, 82(7): 1385–1400.Google Scholar
Berggren, W.A., Kent, D.V., Swisher, I., C.C., & Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P. and Hardenbol, J. (Editors), Geochronology, time scales and global stratigraphic correlation. Special Publication 54. Society of Economic Paleontologists and Mineralogists (Tulsa): 129–212.Google Scholar
Bohatý, S. & Zachos, J.C., 2003. Significant Southern Ocean warming event in the late middle Eocene. Geology 31(11): 1017–1020.CrossRefGoogle Scholar
Brinkhuis, H. & Visscher, H., 1995. The upper boundary of the Eocene series: a reappraisal based on dinoflagellate cyst biostratigraphy and sequence stratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P. & Hardenbol, J. (eds), Geochronology, time scales and global stratigraphic correlation. Special Publication 54. Society of Economic Paleontologists and Mineralogists (Tulsa): 295–304.Google Scholar
Buchardt, B., 1978. Oxygen isotope palaeotemperatures from the Tertiary period in the Norh Sea area. Nature 275: 121–123.CrossRefGoogle Scholar
De Coninck, J., 2001. Organic-walled microfossils in the Oligocene Grimmertingen and Neerrepen Sand Members from the Grimmertingen type locality. Professional Paper 294(2): 1–57.Google Scholar
Dumont, A., 1849. Rapport sur la carte géologique de la Belgique. Bulletin de l’Académie royale de Belgique, XVI(11): 351–373.Google Scholar
Lagrou, D., Vandenberghe, N., Van Simaeys, S. & Hus, J., 2004. Magnetostratigraphy and rock magnetism of the Boom Clay (Rupelian stratotype) in Belgium. Netherlands Journal of Geosciences / Geologie en Mijnbouw 83(3): 209–225.Google Scholar
Lear, C.H., Elderfield, H. & Wilson, P., 2000. Cenozoic deep-sea temperature and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287: 269–272.Google Scholar
Miller, K.G., Feigenson, M.D., Wright, J.D. & Clement, B.M., 1991. Miocene isotope reference section, Deep Sea Drilling Project site 608: an evaluation of isotope and biostratigraphic resolution. Paleoceanography 6(1): 33–52.CrossRefGoogle Scholar
Miller, K.G. Mountain, G.S., Browning, J.V., Kominz, M., Sugarman, P.J., Christy-Blick, N., Katz, M.E. & Wright, J.D., 1998. Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Reviews of Geophysics 36(4): 569–601.Google Scholar
Odin, G.S. & Montanari, A., 1989. Age radiométrique et stratotype de la limite Eocène Oligocène. Comptes Rendus de l’Académie des Sciences de Paris, série II, 309: 1939–1945.Google Scholar
Schmitz, B., Heilmann-Clausen, C., King, C., Steurbaut, E., Andreasson, F.P., Corfield, R.M. & Cartlidge, J.E., 1996. Stable isotope and biotic evolution in the North Sea during the early Eocene; the Albaek Hoved section, Denmark. In: Knox, R.W.O.B., Corfield, R.M. and Dunay, R.E. (eds), Correlation of the early Paleogene in Northwest Europe. Geological Society of London, Special Publication 101: 275–306.Google Scholar
Sissingh, W., 2003. Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology 196: 229–263.CrossRefGoogle Scholar
Steurbaut, E., 1992. Integrated stratigraphic analysis of lower Rupelian deposits (Oligocene) in the Belgian Basin. Annales Société Geologie Belgique 115(1): 287–306.Google Scholar
Stover, L.E. & Hardenbol, J., 1994. Dinoflagellates and depositional sequences in the Lower Oligocene (Rupelian) Boom Clay Formation, Belgium. Bulletin de la Société belge de Geologie 102(1-2): 5–77.Google Scholar
Thomas, E., Zachos, J.C. & Bralower, T.J., 2000. Deep-sea environments on a warm earth: latest Paleocene-early Eocene. In: Huber, B.T. MacLeod, K.G. & Wing, S.L. (eds), Warm Climates in Earth History. University Press, Cambridge UK (Cambridge): 132–160.Google Scholar
Van Simaeys, S., De Man, E., Vandenberghe, N., Brinkhuis, H. & Steurbaut, E., 2004. Stratigraphic and palaeoenvironmental analysis of the Rupelian-Chattian transition in the type region: evidence from dinoflagellate cysts, foraminifera and calcareous nannofossils. Palaeogeography, Palaeoclimatology, Palaeoecology 208: 31–58.CrossRefGoogle Scholar
Vandenberghe, N., Brinkhuis, H. & Steurbaut, E., 2003. The Eocene/Oligocene boundary in the North Sea area: a sequence stratigraphic approach. In: Prothero, D.D. Ivany, L.C. & Nesbitt, E.A. (eds), From Greenhouse to Icehouse. The Marine Eocene-Oligocene Transition. Columbia University Press (New York): 419–437.Google Scholar
Vandenberghe, N., Hager, H., Van Den Bosch, M., Verstraelen, A., Leroi, S., Steurbaut, E., Prüfert, J. & Laga, P., 2001. Stratigraphic correlation by calibrated well logs in the Rupel Group between North Belgium, the Lower-Rhine area in Germany and Southern Limburg and the Achterhoek in The Netherlands. In: Vandenberghe, N. (ed), Contributions to the Paleogene and Neogene Stratigraphy of the North Sea Basin. Aardkundige Mededelingen 11. Leuven University Press (Leuven): 69–84.Google Scholar
Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J. & Vail, P.R., 1998. Tertiary sequence stratigraphy at the Southern border of the North Sea basin in Belgium. In: de Graciansky, P.-C., Hardenbol, J., Jacquin, T. & Vail, P.R. (eds), Mesozoic and Cenozoic sequence stratigraphy of European Basins. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma U.S.A.: 119–153.Google Scholar
Winkelmolen, A.M., 1972. Shape sorting in Lower Oligocene, Northern Belgium. Sedimentary Geology, 7: 183–227.CrossRefGoogle Scholar
Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.CrossRefGoogle ScholarPubMed
Zachos, J.C., Quinn, T.M. & Salamy, S., 1996. High-resolution (104years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography 11(3): 251–266.Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe. 2nd edition. The Hague: Shell International Petroleum Maatschappij B.V., 239 pp.Google Scholar