Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T20:18:51.787Z Has data issue: false hasContentIssue false

A seismologically motivated survey of blasting activity in the northern Rhine area

Published online by Cambridge University Press:  01 April 2016

Klaus-G. Hinzen*
Affiliation:
Seismological Station Bensberg, Department of Earthquake Geology, Geological Institute, University of Cologne, Vinzenz-Pallotti-Str. 26, D-51429 BERGISCH GLADBACH, Germany
Stefan Pietsch
Affiliation:
Seismological Station Bensberg, Department of Earthquake Geology, Geological Institute, University of Cologne, Vinzenz-Pallotti-Str. 26, D-51429 BERGISCH GLADBACH, Germany
*
2corresponding author; e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Discrimination between quarry blasts and earthquakes has gained importance due to signature of the Comprehensive Test Ban Treaty. In this context, large chemical explosions are significant. In the routine analysis of data from local seismograph networks, discrimination between smaller blasts and micro-earthquakes is not always clear. Many quarries are in operation and blasts far outnumber natural earthquakes in the highly industrialized northern Rhine area.

We compiled a list of active quarries in the Northern Rhine Area and mapped their locations. We then created a database from a questionnaire sent out to all quarries on the list. From the 33% of questionnaires that were returned, we discerned some representative values for the main blasting parameters and explosive consumption. In the study area of 72,000 km2, approx. 21,000 blasts are fired per year (80 per working day). Most of the blasts (72%) have total explosive charges between 400 and 4500 kg. Shots with charges above 10 tons are rare (20-30 per year). Some 80% of the blasts are ripple-fired with a nominal firing time interval of 20 ms.

Based on empirical amplitude vs. distance curves from vibration control measurements, a relation between maximum charge weight per delay time, L (kg), and a ‘quarry blast’ magnitude, MQB, is derived: MQB = 0.6·log10(L) + 0.131. Using this relation and extrapolating the database from the questionnaire shows that for magnitudes between 1 and 2, blasts occur 200–250 times more frequently than micro-earthquakes in the Northern Rhine area.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Ahorner, L., 1983. Historical seismicity and present-day microearthquake activity of the Rhenish Massif, Central Europe. In: Fuchs, K. et al. (eds.): ‘Plateau uplift. Springer (Berlin): 198221.CrossRefGoogle Scholar
Baumgardt, D.R. & Ziegler, K.A., 1988. Spectral evidence for source multiplicity in explosions: application to regional discrimination of eathquakes and explosions. Bulletin of the Seismological Society of America 78: 17731795.Google Scholar
Behnke, C., 1970. Über die Beurteilung der Wirkung von Sprengerschütterungen auf Bauwerke. Geologisches Jahrbuch 98: 514.Google Scholar
Böttcher, G. & Lüdeling, K., 1978. Forschungsbericht III Bayrischer Alpenraum, Sprengen - Auswirkung gewerblicher Sprengungen im Alpenraum und deren Schadenswirksamkeit, Methoden der Erfassung, Möglichkeiten der Verminderung Bundesanstalt für Geowissenschaften und Rohstoff Hannover (im Auftrag vom Bayrisches Staatsministerium für Arbeit und Sozialordnung, durchgeführt) RB 10/78/15 (München): 91 pp.Google Scholar
Böttcher, G., Lüdeling, R. & Wüstenhagen, K., 1977. Forschungsbericht II Fränkischer Jura, Sprengen - Untersuchung zur Schematisierung von Erschütterungsintensitäten und deren Wirkungen am Beispiel von Sprengungen. Bundesanstalt für Geowissenschaften und Rohstoffe Hannover (im Auftrag vom Bayrisches Staatsministerium für Arbeit und Sozialordnung) RB 10/77/09 (München): 125 pp.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1997. Large earthquakes in northern Europe more likely than once thought. EOS 77: 405 + 409.Google Scholar
Camelbeeck, T. & Meghraoui, M., 1998. Geological and geophysical evidence for large paleo-earthquakes with surface faulting in the Roer Graben (northwest Europe). Geophysical Journal International 132: 347362.Google Scholar
Chiappetta, R.F., Morhard, R.C., Borg, D.G. & Sterner, V.A., 1987. Explosives and rock blasting. Atlas Powder Company, Field technical operations (Dallas): 662 pp.Google Scholar
De Crook, Th., 1993. Probabilistic seismic hazard assessment for the Netherlands. Geologie en Mijnbouw 72: 113.Google Scholar
Dowding, C.H., 1985. Blast vibration monitoring and control. Prentice Hall (Englewood Cliffs): 297 pp.Google Scholar
Gutenberg, B. & Richter, C.F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Socety of America 38: 185188.CrossRefGoogle Scholar
Hedlin, M.A.H., Minster, J.B. & Orcutt, J.A., 1989. The time freque ncy characteristics of quarry blasts and calibrations in Kazakhstan, USSR. Geophysical Journal International 99:109121.Google Scholar
Hinzen, K.-G., 1988. Modelling of blast vibrations. International Journal on Rock Mechanics, Mineral Science & Geomechanics Abstracts 25 (6): 439445.Google Scholar
Hinzen, K.-G., 1990. Moderne Techniken zur Erfassung, Bearbeitung und Beeinflussung von Sprengerschütterungen unter besonderer Berücksichtigung elektronischer Zünder. Nobel Hefte 56:103112.Google Scholar
Hinzen, K.-G., 1998. Comparison of seismic and explosive energy in five smooth blasting test rounds. International Journal of Rock Mechanics and Mineral Science 35: 957967.Google Scholar
Hinzen, K.-G. & Reamer, S.K., 1991. Effect of firing time variations and explosives array length on seismic wave propagation from quarry blasts. Proceedings 17th Conference on Explosives and Blasting Techniques (Las Vegas): 114123.Google Scholar
Hinzen, K.-G., Lüdeling, R., Heinemeyer, F., Ròh, P. & Steiner, U., 1987. A new approach to predict and reduce blast vibrations by modelling of seismograms and using a new electronic initiation system. Proceedings 13th Conference on Explosives and Blasting Techniques (Miami): 144161.Google Scholar
Koch, H.W., 1958. Zur Möglichkeit der Abgrenzung von Lademengen bei Steinbruchsprengungen nach festgestellten Erschütterungsstärken. Nobel Hefte 24: 9296.Google Scholar
Leydecker, G., Henger, M. & Schick, A., 1997. Data catalogue of earthquakes in Germany and adjacent areas 1993. Bundesanstalt für Geowissenschaften und Rohstoffe: 165 pp.Google Scholar
Lüdeling, R. & Hinzen, K.-G., 1986. Erschütterungsprognose und Erschütterungskataster - Forschungsarbeiten auf dem Gebiet der Sprengerschütterungen. Nobel Hefte 213: 105123.Google Scholar
Meidow, H., 1995. Rekonstruktion und Reinterpretation von historischen Erdbeben in den nördlichen Rheinlanden unter Berücksichtigung der Erfahrungen bei dem Erdbeben von Roer-mond am 13. April 1992. Dissertation, Geologisches Institut Universität Köln: 305 pp.Google Scholar
Reamer, S.K., Hinzen, K.-G. & Stump, B.W., 1992. Near-source characterization of the seismic wavefield radiated from quarry blasts. Geophysical Journal International 110: 435450.CrossRefGoogle Scholar
Richards, P., Anderson, D.A. & Simpson, D.W., 1992. A survey of blasting activity in the United States. Bulletin of the Seismological Society of America 82: 14161433.CrossRefGoogle Scholar
Richter, C.F., 1958. Elementary seismology. Freeman and Company (San Francisco): 768 pp.Google Scholar
Smith, A.T., 1989. High-frequency seismic observations and models of chemical explosions: implications for the discrimination of ripple-fired mining blasts. Bulletin of the Seismological Society of America 79: 10891110.CrossRefGoogle Scholar
Smith, A.T., 1993. Discrimination of explosions from simultaneous mining blasts. Bulletin of the Seismological Society of America 83: 160179.Google Scholar
Stein-Verlag, , 1994. Standortkarte Naturstein Rheinland-Ruhrgebiet, Mittelrhein-Pfalz-Saar. Stein-Verlag Baden-Baden GmbH (Iffezheim).Google Scholar
Wüster, J., 1995. Diskrimination von Erdbeben und Sprengungen im Vogtlandgebiet und Nordwest-Böhmen. Dissertation; Berichte des Instituts für Geophysik der Ruhr-Universität Bochum A 42: 211 pp.Google Scholar