Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T20:58:08.181Z Has data issue: false hasContentIssue false

The Rupelian-Chattian boundary in the North Sea Basin and its calibration to the international time-scale

Published online by Cambridge University Press:  01 April 2016

S. Van Simaeys*
Affiliation:
Historical Geology, University of Leuven, Redingenstraat 16, B-3000 Leuven, Belgium. Fax: +32-16-32-64-01. E-mail:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The classical problem of the nature and age of the Rupelian-Chattian (Early-Late Oligocene) unconformity in its type region is here approached using organic walled dinoflagellate cyst (dinocyst) correlations between the North Sea Basin and well-calibrated central Italian (Tethyan Ocean) sections. Useful Oligocene dinocyst events are the last occurrence of Enneadocysta pectiniformis (~29.3 Ma), and the first occurrences of Saturnodinium pansum (~29.4 Ma), Distatodinium biffii (~27.9 Ma) and Artemisiocysta cladodichotoma (~26.7 Ma).The latter event marks the earliest Chattian. The improved correlations indicate that the Rupelian-Chattian (R-C) boundary is associated with the so-called ‘Oligocene Glacial Maximum’. This phase of important global cooling and glacio-eustatic sea level fall is genetically related to the unconformity between the classic Oligocene stages. Subsequent global warming (so-called ‘Late Oligocene Warming Event’), induced a major sea level rise, leading e.g. to the time-transgressive deposition of the typical basal Chattian glauconitic sands. The oldest of the Chattian units have a GPTS age of-26.7 Ma. It further appears that a hiatus of ~500 kyrs spans the classic Rupelian-Chattian unconformity.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Berggren, W.A., Kent, D.V., Swisher, III, C.C. & Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P. & Hardenbol, J. (eds): Geochronology, time scales and global stratigraphic correlation. Special Publication 54. Society of Economic Paleontologists and Mineralogists (Tulsa): 129–212.Google Scholar
Brinkhuis, H., 1994. Late Eocene to Early Oligocene dinoflagellate cysts from the Priabonian type-area (Northeast Italy): biostratigraphy and paleoenvironmental interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 121–163.Google Scholar
Brinkhuis, H., Powell, A.J. & Zevenboom, D., 1992. High-resolution dinoflagellate cyst stratigraphy of the Oligocene/Miocene transition interval in northwest and central Italy. In: Head, M.J. & Wrenn, J.H. (eds): Neogene and Quaternary dinoflagelate cysts and acritarchs. American Association Stratigraphic Palynologists: 219–258.Google Scholar
Brinkhuis, H. & Biffi, U., 1993. Dinoflagellate cyst stratigraphy of the Eocene/Oligocene transition in central Italy. Marine Micropaleontology 22: 131–183.Google Scholar
Brinkhuis, H. & Visscher, H., 1995. The upper boundary of the Eocene series: a reappraisal based on dinoflagellate cyst biostratigraphy and sequence stratigraphy. In: Berggren, W.A., Kent, D.V., Aubry, M.-P. & Hardenbol, J. (eds): Geochronology, time scales and global stratigraphic correlation. Special Publication 54. Society of Economic Paleontologists and Mineralogists (Tulsa): 295–304.Google Scholar
Brinkhuis, H., Munsterman, D.K., Sengers, S., Sluijs, A., Warnaar, J. & Williams, G.L., 2003. Late Eocene-Quaternary dinoflagellate cysts from ODP Site 1168, off western Tasmania. In: Exon, N.F., Kennett, J.P. & Malone, M.J., (eds): Proceedings of the Ocean Drilling Program, Scientific Results 189: 1–36 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/189_SR/VOLUME/CHAPTERS/105.PDF>.Google Scholar
Coccioni, R., Bellanca, A., Bice, D.M., Brinkhuis, H., Church, N., Deino, A., Lirer, F., Macalady, A., Maiorano, P., Mancin, N., McDaniel, A., Monechi, S., Montanari, A., Neri, R., Nini, C., Nocchi, M., Pross, J., Rochette, P., Sagnotti, L., Sprovieri, M., Tateo, F., Touchard, Y., Van Simaeys, S. & Williams, G.L., (submitted). Integrated stratigraphy of the Oligocene pelagic sequence in the Umbria-Marche Basin (Northeastern Apennines, Italy): A protential GSSP for the Rupelian/Chattian boundary. Geological Society of America, Bulletin.Google Scholar
De Man, E. & Van Simaeys, S., 2004. Late Oligocene Warming Event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences / Geologie en Mijnbouw 83(3): 227–239.Google Scholar
De Man, E., Van Simaeys, S., De Meuter, F., King, C. & Steurbaut, E., 2004. Oligocene benthic foraminiferal zonation for the southern North Sea Basin. Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen - Aardwetenschappen, 74 supplement: 177–195.Google Scholar
Doppert, J.W.C. & Neele, N.G., 1983. Biostratigraphy of marine Paleogene deposits in the Netherlands and adjacent areas. Mededelingen Rijks Geologische Dienst 37(2): 4–79.Google Scholar
Eldrett, J.S., Harding, I.C., Firth, J.V. & Roberts, A.P., 2004. Magnetostratigraphic calibration of Eocene-Oligocene dinoflagellate cyst biostratigraphy from the Norwegian-Greenland Sea. Marine Geology 204: 91–127.Google Scholar
Ellermann, C., 1958. Die mikrofaunistische Gliederung des Oligozäns im Schacht Kapellen bei Moers (Niederrhein). Fortschritte Geologie von Rheinland und Westfalen 1: 205–214.Google Scholar
Indans, J., 1958. Mikrofaunistische Korrelationen im marinen Tertiär der Niederrheinischen Bucht. Fortschritte Geologie für Rheinland und Westfalen 1: 223–238.Google Scholar
Indans, J., 1965. Nachweis des Asterigerinen-Horizontes im Oberoligozän des Dobergs bei Bünde/Westfalen. Neues Jahrbuch Geologie und Paläontologie, Abhandlungen 123(1): 20–24.Google Scholar
King, C., 1983. Cainozoic micropalaeontological biostratigraphy of the North Sea. Report Institute of Geological Sciences 82(7): 1–40.Google Scholar
King, C., 1989. Cenozoic of the North Sea. In: Jenkins, D.G. & Murray, J.W. (eds): Stratigraphical atlas of fossil foraminifera. British Micropalaeontological Society Series. Ellis Horwood Limited (Chichester): 418–489.Google Scholar
Miller, K.G., Wright, J.D. & Fairbanks, R.G., 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion. Journal Geophysical Research 96: 6829–6848.Google Scholar
Miller, K.G., Mountain, G.S., Browning, J.V., Kominz, M., Sugerman, P.J., Christie-Blick, N., Katz, M.E. & Wright, J.D., 1998. Cenozoic global sea level, sequences, and the New Jersey transect: results from coastal plain and continental slope drilling. Reviews of Geophysics 36(4): 569–601.Google Scholar
Odin, G.S. & Montanari, A., 1988. The Eocene-Oligocene boundary at Massignano (Ancona, Italy): a potential boundary stratotype. In: Premoli Silva, I., Coccioni, R. & Montanari, A. (eds): The Eocene-Oligocene Boundary in the Marche-Umbria Basin (Italy). International Union of Geological Sciences Commission on Stratigraphy, International Subcommission on Paleogene Stratigraphy Reports (Ancona, Italy): 253–263.Google Scholar
Odin, G.S. & Montanari, A., 1989. Age radiométrique et stratotype de la limite Eocène-Oligocene. Comptes Rendus de l’Académie des Sciences 309 (serie II): 1939–1945.Google Scholar
Salvador, A., 1994. International stratigraphic guide. The international Union of Geological Sciences and The Geological Society of America, (Boulder, Colorado): 214 pp.Google Scholar
Scotese, C.P. & Golanka, J., 1992. Paleogeographic atlas, PALEOMAP progress report 20–0692. Arlington, University of Texas: 34 pp.Google Scholar
Sissingh, W., 2003. Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology 196: 229–263.Google Scholar
Steininger, F.F., Aubry, M.-P., Berggren, W.A., Biolzi, M., Borsetti, A.M., Cartlidge, J.E., Cati, F., Corfield, R., Gelati, R., Iaccarino, S., Napoleone, C., Ottner, F., Rogl, F., Roetzel, R., Spezzaferri, S., Tateo, F., Villa, G. & Zevenboom, D., 1997. The Global Stratotype Section and Point (GSSP) for the base of the Neogene. Episodes 20(1): 23–28.Google Scholar
Ulleberg, K., 1987. Foraminiferal zonation of the Danish Oligocene sediments. Bulletin Geological Society Denmark 36: 191–202.Google Scholar
Vandenberghe, N., Laga, P., Steurbaut, E., Hardenbol, J. & Vail, P., 1998. Tertiary sequence stratigraphy at the southern border of the North Sea basin in Belgium. In: De Graciansky, P., Hardenbol, J., Jacquin, T. & Vail, P. (eds): Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication 60: 119–154.Google Scholar
Vandenberghe, N., Hager, H., Van Den, Bosch M., Verstraelen, A., Leroi, S., Steurbaut, E., Prüfert, J. & Laga, P., 2001. Stratigraphic correlation by calibrated well logs in the Rupel Group between North Belgium, the Lower-Rhine area in Germany and Southern Limburg and the Achterhoek in The Netherlands. In: Vandenberghe, N. (ed): Contributions to the Paleogene and Neogene Stratigraphy of the North Sea Basin. Aardkundige Mededelingen 11. Leuven University Press (Leuven): 69–84.Google Scholar
Van Simaeys, S., De Man, E., Vandenberghe, N., Brinkhuis, H. & Steurbaut, E., 2004. Stratigraphic and palaeoenvironmental analysis of the Rupelian-Chattian transition in the type region: evidence from dinoflagellate cysts, foraminifera and calcareous nannofossils. Palaeogeography, Palaeoclimatology, Palaeoecology 208:31–58.Google Scholar
Van Simaeys, S., Munsterman, D. & Brinkhuis, H., (in press). Oligocene dinoflagellate cyst biostratigraphy of the southern North Sea Basin. Review Paleobotany and Palynology.Google Scholar
Van Simaeys, S., Brinkhuis, H., Pross, J., Williams, G. & Zachos, J., (submitted). Arctic dinoflagellate migration marks the Oligocene Glacial Maximum. Geology.Google Scholar
Van Simaeys, S., Pross, J., Williams, G. & Brinkhuis, H., (in prep.). Oligocene dinoflagellate cyst biochronostratigraphy: Implications towards the Rupelian-Chattian boundary.Google Scholar
Williams, G.L., Brinkhuis, H., Pearce, M.A., Fensome, R.A. & Weegink, J.W., 2004. Southern Ocean and global dinoflagellate cyst events compared; Index events for the Late Cretaceous-Neogene. In: Exon, N.F., Kennett, J.P. & Malone, M.J. (eds): Proceedings of the Ocean Drilling Program, Scientific Results ODP Leg 189: 1–98 [Online]. Available from World Wide Web: http://www.odp.tamu.edu/publications/189_SR/VOLUME/CHAPTERS/107.PDF>.Google Scholar
Wilpshaar, M., Santarelli, A., Brinkhuis, H. & Visscher, H., 1996. Dinoflagellate cysts and mid-Oligocene chronostratigraphy in the central Mediterranean region. Journal of the Geological Society of London 153: 553–561.Google Scholar
Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.Google Scholar
Zevenboom, D., 1995. Dinoflagellate cysts from the Mediterranean Late Oligocene and Miocene. PhD Thesis, University Utrecht: 221 pp.Google Scholar
Ziegler, P.A., 1990. Geological atlas of western and central Europe. Shell Internationale Petroleum Maatschappij B.V. (Den Haag): 239 pp.Google Scholar