Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T13:23:08.191Z Has data issue: false hasContentIssue false

Restoration of former wetlands in the Netherlands; effect on the balance between CO2 sink and CH4 source

Published online by Cambridge University Press:  01 April 2016

R. van den Bos*
Affiliation:
Department of GeoEnvironmental Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands, e-mail:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Drained coastal peatlands are a source of greenhouse gas (GHG) through abundant CO2 release caused by aerobic peat degradation. Published rates of CO2 fixation and CH4 release for natural peatlands suggest that areas of peat formation are a (small) net source of GHG emission because the radiative effect of emitted CH4 exceeds the CO2 uptake by the vegetation. It is shown here that wetland restoration of reclaimed peat areas in the western Netherlands leads to a reduction of GHG emission because the expected increase in anaerobically generated CH4 release is much smaller than the decrease in aerobically produced CO2.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2003

References

Armentano, T.V. & Menges, E.S., 1986. Patterns of change in the carbon balance of organic soil wetlands of the temperate zone. Journal of Ecology 74: 755–774.Google Scholar
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D., 1995. Variations in atmospheric methane concentration during the Holocene Epoch. Nature 374: 46–49.Google Scholar
Botch, M.S., Kobak, K.I., Vinson, T.S. & Kolchunia, T.P., 1995. Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochemical Cycles 9: 37–46.Google Scholar
Brook, E.J., Sowers, T. & Orchardo, J., 1996. Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273: 1087–1091.CrossRefGoogle Scholar
Chappellaz, J., Blunier, T., Kints, S., Dällenbach, A., Barnola, J.M., Schwander, J., Raynaud, D. & Stauffer, B., 1997. Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. Journal of Geophysical Research 102: 15987–15999.CrossRefGoogle Scholar
Dise, N.B., Gorham, E. & Verry, E.S., 1993. Environmental factors controlling methane emissions from peatlands in northern Minnesota. Journal of Geophysical Research Atmospheres 98: 10583–10594.Google Scholar
GACGC, 1998. The accounting of biological sinks and sources under the Kyoto Protocol - a step forwards or backwards for global environmental protection? German Advisory Council on Global Change (GACGC)/ Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen (WBGU) (Bremerhaven): 75 pp.Google Scholar
Goosen, H., Ruijgrok, E.C.M., Mager, S., Rozema, J., Hoosbeek, M.R., Van Breemen, N., Aiking, H. & Vellinga, P., 1996. Natuurontwikkeling en de mogelijkheden voor koolstofopslag: Achtergrondrapport. Instituut voor Milieuvraagstukken (Amsterdam): 60 pp.Google Scholar
Gorham, E., 1991. Northern peatlands role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.Google Scholar
Gorham, E., 1995. The biogeochemistry of Northern peatlands and its possible responses to Global Warming. In: Woodwell, G.M. & Mackenzie, F.T. (Eds): Biotic feedbacks in the global climatic system; Will the warming feed the warming? Oxford University Press (New York): 169–187.Google Scholar
IPCC, 2000. Land Use, Land-Use Change, and Forestry. A Special Report of the Intergovernmental Panel on Climate Change. Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J. & Dokken, D.J. (Eds). Cambridge University Press (Cambridge): 375 pp.Google Scholar
IPCC, 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J. & Xiaosu, D. (eds). Cambridge University Press (Cambridge): 944 pp.Google Scholar
Koerselman, W., 1989. Hydrology and nutrient budgets of fens in an agricultural landscape. University of Utrecht, Krips Repro (Meppel): 164 pp.Google Scholar
Kuhry, P. & Vitt, D.H., 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77: 271–275.CrossRefGoogle Scholar
Lashof, D.A. and Ahuja, D.R., 1990. Relative contributions of greenhouse gas emissions to global warming. Nature 344: 529–531.CrossRefGoogle Scholar
Martikainen, P.J., Nykänen, H., Alm, J. & Silvola, J., 1995. Change in fluxes of carbon dioxide, methane and nitrous oxide due to forest drainage of mire sites of different trophy. Plant and Soil 169:571–577.Google Scholar
Nykänen, H., Alm, J., Lang, K., Silvola, J. & Martikainen, P.J., 1995. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography 22:351–357.Google Scholar
Post, W.M., Emanuel, W.R., Zinke, P.J. & Stangenberger, A.G., 1982. Soil carbon pools and world life zones. Nature 298: 156–159.CrossRefGoogle Scholar
Roulet, N.T., Jano, A., Kelly, C.A., Klinger, L.F., Moore, T.R., Protz, R., Ritter, J.A. & Rouse, W.R., 1994. Role of the Hudson-Bay Lowland as a source of atmospheric methane. Journal of Geophysical Research-Atmospheres 99: 1439–1454.Google Scholar
Shannon, R.D. & White, J.R., 1994. A Three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27: 35–60.Google Scholar
Trumbore, S.E., Bubier, J.L., Harden, J.W. & Crill, P.M., 1999. Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research-Atmospheres 104: 27673–27682.Google Scholar
Van den Bos, R. & Van de Plassche, O., submitted to Biogeochemistry. Variables influencing present-day emission of methane and carbon dioxide from coastal peatlands in the western Netherlands.Google Scholar
Van den Pol-Van Dasselaar, A., 1998. Methane emission from grasslands. Wageningen Agriculture University (Wageningen): 179 pp.Google Scholar
Van Huissteden, J. & Van den Bos, R., submitted to Global Biogeochemical Cycles. Modeling the effect of water-table management on CO2 and CH4 fluxes from peat soil.Google Scholar
Vasander, H., 1996. Peatlands in Finland. Finnish Peatland Society (Helsinki): 168 pp.Google Scholar