Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:01:33.509Z Has data issue: false hasContentIssue false

Relative water-level rise in the Flevo lagoon (The Netherlands), 5300-2000 cal. yr BC: an evaluation of new and existing basal peat time-depth data

Published online by Cambridge University Press:  01 April 2016

B. Makaske*
Affiliation:
Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
D.G. Van Smeerdijk
Affiliation:
BIAX Consult, Hogendijk 134, 1506 AL Zaandam, The Netherlands
H. Peeters
Affiliation:
National Service for Archaeological Heritage (ROB), P.O. Box 1600, 3800 BP Amersfoort, The Netherlands
J.R. Mulder
Affiliation:
Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
T. Spek
Affiliation:
Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
*
2Corresponding author; e-mail:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rise of Holocene (ground)water level as a function of relative sea-level rise has been extensively investigated in the western Netherlands, whereas few studies focused on the Flevo lagoon in the central Netherlands. In this study, all available 14C dates from the base of basal peat overlying the top of compaction-free Pleistocene sand in the former Flevo lagoon were evaluated in order to reconstruct water-level rise for the period 5300-2000 cal. yr BC. The present basal peat 14C data set from Flevoland consists of two subsets: (1) the largely new Almere data (41 dates) representing the southern part of the former Flevo lagoon, with 26 dates especially carried out for this study, and (2) the existing Schokland data (21 dates) representing the eastern part of the lagoon. The Schokland area is located about 50 km from the Almere area. The quality of all basal peat time-depth data was palaeo-ecologically and geologically evaluated, all 14C dates were calibrated to the same standards, and error margins of age and altitude determination were estimated. After plotting the data as error boxes in time-depth graphs, lower limit curves for water-level rise were constructed for both data sets. Comparison with the mean sea-level curve for The Netherlands (Van de Plassche, 1982) suggests that water-level rise in the Almere area between 5300 and 2000 cal. yr BC corresponded closely to the rise in mean sea level. The same holds for the Schokland area for the period 5000-4200 cal. yr BC. For the period 4200-2000 cal. yr BC, however, the Schokland data suggest water-level rise to have been slower than mean sea-level rise, leading to local water levels apparently below mean sea level, which is virtually impossible. Hypothetical explanations for this discrepancy include: errors and uncertainties in mean sea-level and local water-level reconstruction, basin subsidence and temporal differences in intra-coastal tidal damping. The presently available data are inconclusive at this point and Holocene water-level rise in the Flevo lagoon awaits further investigations.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2003

References

Beets, D.J., Van der Valk, L. & Stive, M.J.F., 1992. Holocene evolution of the coast of Holland. Marine Geology 103: 423–443.CrossRefGoogle Scholar
Beets, D.J., Van der Spek, A.J.F. & Van der Valk, L., 1994. Holocene ontwikkeling van de Nederlandse kust. RGD rapport 40.016 - Projekt Kustgenese, Rijks Geologische Dienst (Haarlem): 53 pp.Google Scholar
Beets, D.J. & Van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and the back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea level rise and sediment supply. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 3–16.Google Scholar
De Jong, A.F.H., 1981. Natural 14C variations. Unpublished Ph.D. dissertation, Rijksuniversiteit Groningen (Groningen): 119 pp.Google Scholar
Den Held, A.J., Schmitz, M. & Van Wirdum, G., 1992. Types of terrestrializing fen vegetation in the Netherlands. In: Verhoeven, J.T.A. (ed.): Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and conservation. Geobotany 18: 237–321.Google Scholar
Dirkx, G.H.P., Hommel, P.W.F.M. & Vervloet, J.A.J., 1996. Kampereiland: een wereld op de grens van zout en zoet. Matrijs (Utrecht): 112 pp.Google Scholar
Doppert, J.W.C., Ruegg, G.H.J., Van Staalduinen, C.J., Zagwijn, W.H. & Zandstra, J.G., 1975. Formaties van het Kwartair en Boven-Tertiair in Nederland. In: Zagwijn, W.H. & Van Staalduinen, C.J. (eds.): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 11–56.Google Scholar
Ente, P.J., Koning, J. & Koopstra, R., 1986. De bodem van Oostelijk Flevoland. Flevobericht 258, Rijksdienst voor de IJsselmeerpolders (Lelystad): 181 pp.Google Scholar
Gotjé, W., 2001. Bodemkunde en landschapsecologie III: vegetatieontwikkeling en diatomeeën. In: Hogestijn, J.W.H. & Peeters, J.H.M. (eds.): De mesolithische en vroeg-neolithische vindplaats Hoge Vaart - A27 (Flevoland). Rapportage Archeologische Monumentenzorg 79, ROB, (Amersfoort): vol. 9.Google Scholar
Heidemij, , 1993. Atlas: Pleistoceen zand in Zuidelijk Flevoland; Rivierduinen, dekzandruggen en verspoeld pleistocene zandlagen in de secties Gz, Kz, Lz en Nz van Zuidelijk Flevoland. Rapportnummer 635/EA93/C326/21083, Heidemij Advies.Google Scholar
Hogestijn, J.W.H. & Peeters, J.H.M. (eds.), 2001. De mesolithische en vroeg-neolithische vindplaats Hoge Vaart - A27 (Flevoland). Rapportage Archeologische Monumentenzorg 79, ROB (Amersfoort): 20 vols.Google Scholar
Jelgersma, S., 1961. Holocene sea level changes in The Netherlands. Mededelingen van de Geologische Stichting, Serie C VI 7: 100 pp.Google Scholar
Kiden, P., 1995. Holocene relative sea level change and crustal movement in the southwestern Netherlands. Marine Geology 124: 21–41.Google Scholar
Lorentz, G.K., Groenewoud, W., Schokking, F., Van den Berg, M.W., Wiersma, J., Brouwer, F.J.J. & Jelgersma, S., 1991. Heden en verleden, Nederland naar beneden??? Interim-rapport over het onderzoek naar bodembeweging in Nederland. Rijkswaterstaat / Rijks Geologische Dienst (Delft/Haarlem/Rijswijk): 75 pp.Google Scholar
Louwe Kooijmans, L.P., 1974. The Rhine/Meuse delta; four studies on its prehistoric occupation and Holocene geology. Analecta Praehistoria Leidensia 7: 421 pp.Google Scholar
Makaske, B., Van Smeerdijk, D.G., Mulder, J.R. & Spek, T., 2002a. De stijging van de waterspiegel nabij Almere in de periode 5300–2300 v. Chr. Alterra-rapport 478, Alterra (Wageningen): 105 pp.Google Scholar
Makaske, B., Van Smeerdijk, D.G., Kooistra, M.J., Haring, R.M.K., Verbauwen, E.C. & Smit, A., 2002b. Een verkenning van begraven dekzandbodems in een bodembeschermingsgebied ten zuidoosten van Almere; een interdisciplinair onderzoek naar de kwaliteit van het bodemarchief, met implicaties voor archeologische waarden. Alterra-rapport 486, Alterra (Wageningen): 147 pp.Google Scholar
Menke, U., Van de Laar, E. & Lenselink, G., 1998. De geologie en bodem van Zuidelijk Flevoland. Flevobericht 415, Rijkswaterstaat Directie IJsselmeergebied (Lelystad): 93 pp.Google Scholar
Mook, W.G. & Streurman, H.J., 1983. Physical and chemical aspects of radiocarbon dating. In: Mook, W.G. & Waterbolk, H.T. (eds): Proceedings of the first international symposium 14C and archeology, Groningen, 1981. PACT 8: 31–55.Google Scholar
Peeters, H., Makaske, B., Mulder, J., Otte-Klomp, A., Van Smeerdijk, D., Smit, S. & Spek, T., 2002. Elements for archaeological heritage management: exploring the archaeological potential of drowned Mesolithic and Early Neolithic landscapes in Zuidelijk Flevoland. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 45: 83–125.Google Scholar
Roeleveld, W., 1974. The Holocene evolution of the Groningen marine-clay district. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 24, Supplement: 132 pp.Google Scholar
Roeleveld, W. & Gotjé, W., 1993. Holocene waterspiegelontwikkeling in de Noordoostpolder in relatie tot zeespiegelbeweging en kustontwikkeling. In: Gotjé, W.: De Holocene laagveenontwikkeling in de randzone van de Nederlandse kustvlakte (Noordoostpolder), Unpublished Ph.D. dissertation, Vrije Universiteit (Amsterdam): 76–86.Google Scholar
Roep, T.B. & Beets, D.J., 1988. Sea level rise and paleotidal levels from sedimentary structures in the coastal barriers in the western Netherlands since 5600 BP. Geologie en Mijnbouw 67: 53–60.Google Scholar
Spek, T., Bisdom, E.B.A. & Van Smeerdijk, D.G., 1997. Verdronken dekzandgronden in Zuidelijk Flevoland (archeologische opgraving ‘A27-Hoge Vaart’): een interdisciplinaire studie naar de veranderingen van bodem en landschap in het Mesolithicum en Vroeg-Neolithicum. Rapport 472.1, DLO - Staring Centrum (Wageningen): 187 pp. (has also appeared as volume 7 in Hogestijn & Peeters, 2001).Google Scholar
Spek, T., Bisdom, E.B.A. & Van Smeerdijk, D.G., 1999. Verdronken dekzandgronden in Zuidelijk Flevoland (archeologische opgraving ‘A27-Hoge Vaart’): een aanvullend bodemkundig en palaeoecologisch onderzoek naar de landschapsvormende processen tijdens de laatste fase van bewoning (Vroeg-Neolithicum). Rapport 472.2, DLO - Staring Centrum (Wageningen): 154 pp. (has also appeared as volume 8 in Hogestijn & Peeters, 2001).Google Scholar
Törnqvist, T.E., & Bierkens, M.P.F. 1994. How smooth should curves be for calibration of radiocarbon ages? Radiocarbon 36: 11–26.Google Scholar
Törnqvist, T.E., De Jong, A.F.M., Oosterbaan, W.A. & Van der Borg, K., 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34: 566–577.Google Scholar
Törnqvist, T.E., Van Ree, M.H.M., Van ‘t Veer, R. & Van Geel, B., 1998. Improving methodology for high-resolution reconstruction of sea level rise and neotectonics by paleoecological analysis and AMS 14C-dating of basal peats. Quaternary Research 49: 72–85.Google Scholar
Van de Plassche, O., 1982. Sea level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36-1: 93 pp.Google Scholar
Van de Plassche, O., 1995a. Periodic clay deposition in a fringing peat swamp in the lower Rhine-Meuse river area, 5,400-3,400 cal BC. Journal of Coastal Research Special Issue 17: 95–102.Google Scholar
Van de Plassche, O., 1995b. Evolution of the intra-coastal tidal range in the Rhine-Meuse delta and Flevo lagoon, 5700–3000 yrs cal B.C. Marine Geology 124: 113–128.Google Scholar
Van de Plassche, O. & Roep, T.B., 1989. Sea level changes in the Netherlands during the last 6500 years: basal peat vs. coastal barrier data. In: Scott, D.B., Pirazolli, P.A. & Honig, C.A. (eds): Late Quaternary sea level correlation and applications. NATO ASI Series C256, Kluwer (Dordrecht): 41–56.Google Scholar
Van de Plassche, O., Bohncke, S.J.P. & Makaske, B., in prep. Relative sea-level change in the central Netherlands (7200–3500 cal BP): implications for crustal stability and local tidal range, (preliminary title) Quaternary International.Google Scholar
Van der Plicht, J., 1993. The Groningen radiocarbon calibration program. Radiocarbon 35: 231–237.Google Scholar
Van Dijk, G.J., Berendsen, H.J.A. & Roeleveld, W. 1991. Holocene water level development in The Netherlands’ river area; implications for sea level reconstruction. Geologie en Mijnbouw 70: 311–326.Google Scholar
Van Montfrans, H.M., 1975. Toelichting bij de ondiepe breukenkaart met diepteligging van de Formatie van Maassluis. In: Zagwijn, W.H. & Staalduinen, C.J. Van (eds.): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 103–108.Google Scholar
Van Smeerdijk, D.G., 1989. Alder car, growth and drowning in the IJsselmeer region, an aspect of Dutch coastal development. Acta Botanica Neerlandica 38: 477–491.Google Scholar
Zagwijn, W.H., 1986. Nederland in het Holoceen. Rijks Geologische Dienst (Haarlem): 46 pp.Google Scholar
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and the Quarternary: a case history of coastal lowland evolution. Geologie en Mijnbouw 68: 107–120.Google Scholar