Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T04:34:01.920Z Has data issue: false hasContentIssue false

Reconstruction of burial history, temperature, source rock maturity and hydrocarbon generation in the northwestern Dutch offshore

Published online by Cambridge University Press:  24 March 2014

R. Abdul Fattah*
Affiliation:
TNO – Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
J.M. Verweij
Affiliation:
TNO – Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
N. Witmans
Affiliation:
TNO – Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
J.H. ten Veen
Affiliation:
TNO – Geological Survey of the Netherlands, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

3D basin modelling is used to investigate the history of maturation and hydrocarbon generation on the main platforms in the northwestern part of the offshore area of the Netherlands. The study area covers the Cleaverbank and Elbow Spit Platforms. Recently compiled maps and data are used to build the input geological model. An updated and refined palaeo water depth curve and newly refined sediment water interface temperatures (SWIT) are used in the simulation. Basal heat flow is calculated using tectonic models. Two main source rock intervals are defined in the model, Westphalian coal seams and pre-Westphalian shales, which include Namurian and Dinantian successions. The modelling shows that the pre-Westphalian source rocks entered the hydrocarbon generation window in the Late Carboniferous. In the southern and central parts of the study area, the Namurian started producing gas in the Permian. In the north, the Dinantian source rocks appear to be immature. Lower Westphalian sediments started generating gas during the Upper Triassic. Gas generation from Westphalian coal seams increased during the Paleogene and continues in present-day. This late generation of gas from Westphalian coal seams is a likely source for gas accumulations in the area.

Westphalian coals might have produced early nitrogen prior to or during the main gas generation occurrence in the Paleogene. Namurian shales may be a source of late nitrogen after reaching maximum gas generating phase in the Triassic. Temperatures reached during the Mid Jurassic were sufficiently high to allow the release of non-organic nitrogen from Namurian shales.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Abdul Fattah, R., Verweij, J.M., Witmans, N. & Ten Veen, J.H., 2012a. Reconstruction of burial history, temperature, source rock maturity and hydrocarbon generation for the NCP-2D area, Dutch Offshore. TNO – Geological Survey of the Netherlands (Utrecht). Report number TNO-034-UT-2010-0223.Google Scholar
Abdul Fattah, R., Verweij, J.M. & Ten Veen, J.H., 2012b. 4D Basin modelling of the Broad Fourteens Basin and offshore West Netherlands Basin; Erosion and heat flow reconstruction and its influence on temperature, maturity and hydrocarbon generation. TNO – Geological Survey of the Netherlands (Utrecht). Report number TNO 2012 R10670.Google Scholar
De Jager, J., 2003. Inverted basins in the Netherlands, similarities and differences. Netherlands Journal of Geosciences 82: 355366.CrossRefGoogle Scholar
De Jager, J., 2007. Geological development. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (KNAW) (Amsterdam): 526.Google Scholar
De Jager, J. & Geluk, M.C., 2007. Petroleum geology. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (KNAW) (Amsterdam): 241264.Google Scholar
Doornenbal, J.C. & Stevenson, A.G. (eds), 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten), 342 pp.Google Scholar
Duin, E.J.T., Doornenbal, J.C., Rijkers, R.H.B., Verbeek, J.W. & Wong, T.E., 2006. Subsurface structure of the Netherlands; results of recent onshore and offshore mapping. Netherlands Journal of Geosciences 85: 245276.CrossRefGoogle Scholar
Gerling, P., Geluk, M.C., Kockel, F., Lokhorst, A., Lott, G.K. & Nicholson, R.A., 1999. NW European Gas Atlas – new implications for the Carboniferous gas plays in the western part of the Southern Permian Basin. In: Fleet, A.J. & Boldy, S.A.R. (eds): Petroleum Geology of North-West Europe: Proceedings of the 5th Conference. The Geological Society (London): 799808.Google Scholar
Gerling, P., Idiz, E., Everlien, G. & Sohns, E., 1997. New aspects on the origin of nitrogen in natural gas in northern Germany. Geologisches Jahrbuch D103: 6584.Google Scholar
Gradstein, F.M., Ogg, J.G. & Smith, A.G., 2004. A Geologic Time Scale 2004. Cambridge University Press (Cambridge), 589 pp.CrossRefGoogle Scholar
International Commission on Stratigraphy (ICS), 2008. International Stratigraphic Chart. Cambridge University Press, 184 pp.Google Scholar
Kombrink, H., 2008. The Carboniferous of the Netherlands and surrounding areas; a basin analysis. PhD thesis, Utrecht University (Utrecht), 184 pp.Google Scholar
Kombrink, H., Besly, B., Collinson, J.D., Den Hartog Jager, D.G., Drozdzewski, G., Dusar, M., Hoth, P., Pagnier, H.J.M., Stemmerik, L., Waksmundzka, M.I. & Wrede, V., 2010. Carboniferous. In: Doornenbal, J.C. & Stevenson, A.G. (eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 8199.Google Scholar
Kombrink, H., DellaLunga, D., Mijnlieff, H. & Kroon, I., 2009. Nitrogen contents in the northwest Netherlands offshore. TNO-NITG (Utrecht; www.nlog.nl).Google Scholar
Kombrink, H., Doornenbal, J.C., Duin, E.J.T., DenDulk, M., Van Gessel, S.F., Ten Veen, J.H. & Witmans, N., 2012. New insights into the geological structure of the Netherlands; results of a detailed mapping project. Netherlands Journal of Geosciences 91–4: 419446, this issue.CrossRefGoogle Scholar
Kozur, H.W. & Bachmann, G.H., 2008. Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. Berichte der Geologischen Bundesanstalt 76: 5358.Google Scholar
Krooss, B., Jurisch, A. & Plessen, B., 2006. Investigation of the fate of nitrogen in Palaeozoic shales of the Central European Basin. Journal of Geochemical Exploration 89: 191194.CrossRefGoogle Scholar
Krooss, B.M., Friberg, L., Gensterblum, Y., Hollenstein, J., Prinz, D. & Littke, R., 2005. Investigation of the pyrolytic liberation of molecular nitrogen from Palaeozoic sedimentary rocks. International Journal of Earth Sciences 94: 10231038.CrossRefGoogle Scholar
Krooss, B.M., Littke, R., Müller, B., Frielingsdorf, J., Schwochau, K. & Idiz, E.F., 1995. Generation of nitrogen and methane from sedimentary organic matter: implications on the dynamics of natural gas accumulations. Chemical Geology 126: 291318.CrossRefGoogle Scholar
Littke, R., Krooss, B., Idiz, E. & Frielingsdorf, J., 1995. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures. American Association of Petroleum Geologists Bulletin 79: 410430.Google Scholar
Mingram, B., Hoth, P. & Harlov, D.E., 2003. Nitrogen potential of Namurian shales in the North German Basin. Journal of Geochemical Exploration 78–79: 405408.CrossRefGoogle Scholar
Mingram, B., Hoth, P., Lüders, V. & Harlov, D., 2005. The significance of fixed ammonium in Palaeozoic sediments for the generation of nitrogen-rich natural gases in the North German Basin. International Journal of Earth Sciences 94: 10101022.CrossRefGoogle Scholar
Munsterman, D.K., Verreussel, R.M.C.H., Mijnlieff, H.F., Witmans, N., Kerstholt-Boegehold, S. & Abbink, O.A., 2012. Revision and update of the Callovian-Ryazanian Stratigraphic Nomenclature in the northern Dutch offshore i.e. Central Graben Subgroup and Scruff Group. Netherlands Journal of Geosciences 91–4: 555590, this issue.CrossRefGoogle Scholar
Pepper, A.S. & Corvi, P.J., 1995. Simple kinetic models of petroleum formation. Part III: modelling an open system. Marine and Petroleum Geology 12: 417452.CrossRefGoogle Scholar
Pletsch, T., Appel, J., Botor, D., Clayton, C.J., Duin, E.J.T., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag-Henning, C., Papiernek, B. & Van Bergen, F., 2010. Petroleum Generation and Migration. In: Doornenbal, J.C. & Stevenson, A.G. (eds): Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v. (Houten): 225253.Google Scholar
Quirk, D.G., 1993. Interpreting the Upper Carboniferous of the Dutch Cleaver Bank High. In: Parker, J.R. (ed.): Petroleum Geology of North-West Europe: Proceedings of the 4th Conference. The Geological Society (London): 697706.Google Scholar
Schroot, B.M., Van Bergen, F., Abbink, O.A., David, P., Van Eijs, R. & Veld, H., 2006. Hydrocarbon potential of the Pre-Westphalian in the Netherlands on-and offshore – report of the PetroPlay project. TNO Built Environment and Geosciences (Utrecht). Report number NITG-05-155-C, 436 pp.Google Scholar
Sekiguchi, K., 1984. A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics 103: 6779.CrossRefGoogle Scholar
Sissingh, W., 2004. Palaeozoic and Mesozoic igneous activity in the Netherlands; a tectonomagmatic review. Netherlands Journal of Geosciences 83: 113134.CrossRefGoogle Scholar
Sweeney, J.J. & Burnham, A.K., 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin 74: 15591570.Google Scholar
TNO-NITG, 2004. Geological Atlas of the Subsurface of the Netherlands – onshore. Netherlands Institute of Applied Geoscience TNO (Utrecht), 104 pp.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P., 1993. Stratigraphic nomenclature of the Netherlands, revision and update by RGD and NOGEPA, Section A, General. Mededelingen Rijks Geologische Dienst 50: 140.Google Scholar
Van Balen, R.T., Van Bergen, F., De Leeuw, C., Pagnier, H., Simmelink, H., Van Wees, J.D. & Verweij, H., 2000. Modelling the hydrocarbon generation and migration in the West Netherlands Basin, the Netherlands. Netherlands Journal of Geosciences 79: 2944.CrossRefGoogle Scholar
Van Bergen, M.J. & Sissingh, W., 2007. Magmatism in the Netherlands: expression of the north-west European rifting history. In: Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (KNAW) (Amsterdam): 197222.Google Scholar
Van Wees, J.D., Stephenson, R.A., Ziegler, P.A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F. & Scheck, M., 2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology 17: 4359.CrossRefGoogle Scholar
Van Wees, J.D., Van Bergen, F., David, P., Nepveu, M., Beekman, F., Cloetingh, S.A.P.L. & Bonté, D., 2009. Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications. Marine and Petroleum Geology 26: 536551.CrossRefGoogle Scholar
Verweij, H., 2006, Nitrogen in natural gas accumulations in onshore and offshore Netherlands. Report TNO Built Environment and Geosciences (Utrecht), 25 pp.Google Scholar
Verweij, J.M., 2008. Isotopic signature of nitrogen: an indicator for timing N2 generation and N2 charging of Dutch natural gas accumulations. 70th EAGE Conference & Exhibition (Rome).Google Scholar
Verweij, J.M., Souto Carneiro Echternach, M. & Witmans, N., 2009. Terschelling Basin and southern Dutch Central Graben. Burial history, temperature, source rock maturity and hydrocarbon generation – Area 2A. TNO (Utrecht), Report number 034-UT-2009-02065.Google Scholar
Verweij, J.M., Souto Carneiro Echternach, M. & Witmans, N., 2010. Central Offshore Platform – Area NCP2E. Burial history, temperature, source rock maturity and hydrocarbon generation. TNO Built Environment and Geosciences - National Geological Survey (Utrecht, the Netherlands). Report number TNO-034-UT-2010-01298/A.Google Scholar
Verweij, J.M., Souto Carneiro Echternach, M., Witmans, N. & Abdul Fattah, R., 2012. Reconstruction of basal heat flow, surface temperature, source rock maturity and hydrocarbon generation in salt-dominated Dutch Basins. In: Peters, K., Curry, D. & Kacewicz, M. (eds): Basin Modeling: New horizons in research and applications. AAPG Hedberg Series: 122.Google Scholar
Wong, T.E., Batjes, D.A.J. & De Jager, J. (eds), 2007. Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (KNAW) (Amsterdam), 354 pp.Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe (2nd edition). Shell Internationale Petroleum Maatschappij B.V., Geological Society Publishing House (Bath), 239 pp.Google Scholar