Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T23:20:14.314Z Has data issue: false hasContentIssue false

Reconstructing Late Quaternary fluvial process controls in the upper Aller Valley (North Germany) by means of numerical modeling

Published online by Cambridge University Press:  01 April 2016

A. Veldkamp*
Affiliation:
Laboratory Soil Science and Geology, Dept. Environmental Sciences, Wageningen University, P.O. Box 37, 6700 AA Wageningen, the Netherlands.
M.W. Van den Berg
Affiliation:
NITG-TNO Geological Survey of the Netherlands, P.O. Box 511, 8000 AM Zwolle, the Netherlands
J.J. Van Dijke
Affiliation:
Department of Applied Earth Sciences, Delft Technical University, Mijnbouwstraat 120, 2628 RX, Delft, the Netherlands.
R.M. Van den Berg van Saparoea
Affiliation:
Laboratory Soil Science and Geology, Dept. Environmental Sciences, Wageningen University, P.O. Box 37, 6700 AA Wageningen, the Netherlands.
*
*Corresponding Author
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The morpho-genetic evolution of the upper Aller valley (Weser basin, North Germany) was reconstructed using geological and géomorphologie data integrated within a numerical process model framework (FLUVER-2). The current relief was shaped by Pre-Elsterian fluvial processes, Elsterian and Saalian ice sheets, followed by Weichselian fluvial processes. Structural analysis based on subsurface data and morphological interpretations were used to reconstruct uplift/subsidence rates. A detailed analysis led to the hypothesis that we are dealing with either a NNW-SSE or a WSW-ENE oriented compression leading to uplift in the upper Aller valley. It is also hypothesised that the NNW-SSE compression might have caused strike-slip deformation leading to differential block movement and tilt. Two different uplift rate scenarios were reconstructed and used as a variable parameter in numerical modelling scenarios simulating the Late Quaternary longitudinal dynamics of the Aller. Each different scenario was run for 150.000 years and calibrated to the actual setting. The resulting model settings were consequently evaluated for their plausibility and validity. Subsequently, regional semi-3D simulations of valley development were made to test the two tectonic stress hypotheses. Differential tectonic uplift and regional tilt seems to have played an important role in shaping the current valley morphology in the upper Aller. Unfortunately, due to the uncertainties involved, we were unable to discriminate between the two postulated tectonic stress scenarios.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Berger, A.L. & Loutre, M.F., 1997. Paleoclimate sensitivity to C02 and insolation. Ambio 26: 3237.Google Scholar
Best, G., 1996. Flosstektoniek in Norddeutschland, Erste Ergebnisse der reflexionsseismischen Untersuchungen an der Salzstruktur: Obereres Allertal Zeitschrift der Deutschen Geologischen Gesellschaft 147: 455464.Google Scholar
BGR, 1996. Tectonic Arias of NW-Germany 1:300.000. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.Google Scholar
Bloom, A.L., 1998. Geomorphology. A systematic analysis of Late Cenozoic Landforms, Third edition. Prentice Hall (New Jersey USA): 482 pp.Google Scholar
Bridgland, D.T., 2000. River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quaternary Science Reviews 19: 12931303.CrossRefGoogle Scholar
Ehlers, J., 1990. Untersuchungen zur Morphodynamik des Vereisungen Norddeutschlands unter Berücksichtigung benachbarter Gebiete. Bremer Beiträge zur Geographie und Raumplannung 19: 166 pp.Google Scholar
Ehlers, J., Meyer, K.D. & Stephan, H.J., 1984. The pre-Weichselian glaciations of North-West Europe. Quaternary Science Reviews 3: 140.CrossRefGoogle Scholar
Ehlers, J. & Linke, G., 1989. The origin of deep buried channels of Elsterian age in Northwest Germany Journal of Quaternary Science 4: 255265.Google Scholar
Eissmann, L., Litt, Th. & Wansa, St., 1995. Elsterian and Saalian deposits in their type area in central Germany. In: Ehlers, J., Kozarski, S. & Gibbard, R.L. (eds). Quaternary deposits in North-East Europe. Balkema (Rotterdam) 439464.Google Scholar
Eissmann, L. & Litt, Th., 1995. Late Pleistocene deposits in central Germany. In: Ehlers, J., Kozarski, S. & Gibbard, P.L., (eds). Quaternary deposits in North-East Europe: 465472. Balkema, (Rotterdam).Google Scholar
Goes, S., Loohuis, J.J.P., Wortel, M.J.R. & Govers, R., 2000. The effect of plate stresses and shallow mantle temperatures on tectonic of north-western Europe. Global and Planetary Change 27: 2338.CrossRefGoogle Scholar
Johnston, O., Wu, P. & Lambeck, K., 1998. Dependence of horizontal stress magnitude on load dimensions in glacial rebound models. Geophysical Journal International 132: 4160.CrossRefGoogle Scholar
Kirkby, M.J., 1986. A two-dimensional simulation model for slope and stream evolution. In: Abrahams, A.D. (ed.): Hillslope processes. Allen & Unwin, Inc. (Winchester, Mass., USA): 203222.Google Scholar
Kugler, H.G. & Villwock, G., 1995. Morphogenetische Kartierung Untersuchungsgebiet ERA Morsleben. Bericht Bundesamt für Strahlenschutz. 11 Anlagen und 5 Tabellen.Google Scholar
Maddy, D., Bridgland, D.R. & Green, C.P., 2000. Crustal uplift in southern England: evidence from the river terrace records. Geomorphology 33: 167182.CrossRefGoogle Scholar
Müller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, S., Pavoni, N., Stephanson, O. & Ljunggren, C., 1992. Regional patterns of tectonic stress in Europe. Journal of Geophysical Research: 1178311803.CrossRefGoogle Scholar
Oreskes, N., Shrader-Frechette, K. & Belitz, K., 1994. Verification, validation and confirmation of numerical models in the Earth Sciences. Science 263: 641644.CrossRefGoogle ScholarPubMed
Piotrowski, J.A., 1994. TunneI-vaIIey formation in northwest Germany: geology, mechanisms of formation and subglacial bed conditions for the Bornhoeved tunnel valley. Sedimentary Geology 89: 107141.Google Scholar
Reading, H.G., 1980. Characteristics and recognition of strike-slip fault systems. Spec. Pubi. Int. Ass. Sediment. 4: 726.Google Scholar
Rohde, P., 1989. Elf Pleistocene Sand-Kies-terrasse der Weser: Erlauterung eines Gliederungsschema für das obere Weser-Tal. Eiszeitalter und Gegenwart 39: 4256.Google Scholar
Schaller, M., Von Blanckenburg, F., Veldkamp, A., Tebbens, L.A., Hovius, N. & Kubik, R.W., 2002. A 30 ky record of erosion rates from cosmogenic 10Be in Middle European river terraces. Earth and Planetary Science Letters 204: 307320.CrossRefGoogle Scholar
Tebbens, L.A., Veldkamp, A., Van Dijke, J.J. & Schoorl, J.M. 2000. Modelling longitudinal profile development in response to Late Quaternary tectonic uplift, sea-level and climate changes: the River Meuse. Global and Planetary Change 27: 165186.CrossRefGoogle Scholar
Tebbens, L.A. & Veldkamp, A., 2001. Exploring the possibilities and limitations of modelling Quaternary fluvial dynamics. In: Maddy, D., Macklin, M. & Woodward, J. (eds.): River Basin Sediment Systems: Archives of Environmental Change. Chapter 17, Balkema (Rotterdam): 469484.Google Scholar
Urban, B., Thieme, H. & Eisner, H., 1988. Biostratigraphie, quartärgeologische und urgeschichtliche Befunde aus dem Tagebau ‘Schoeningen’, Ldkr. Helmstedt. Zeitschrift der Deutschen Geologischen Gesellschaft 139: 123154.CrossRefGoogle Scholar
Van den Berg, M.W. & Van Hoof, T., 2001. The Maas terrace sequence at Maastricht, SE Netherlands: evidence for 200 m of late Neogene and Quaternary surface uplift. In: Maddy, D., Macklin, M. & Woodward, J. (eds.): River Basin Sediment Systems: Archives of Environmental Change. Chapter 3, Balkema (Rotterdam): 4586.Google Scholar
Van den Berg, M.W., 1994. Neotectonics of the Roer Valley rift system. Style and rate of crustal deformation inferred from syn-tectonic sedimentation. Geologie en Mijnbouw 73: 143156.Google Scholar
Veldkamp, A., 1992. A 3-D model of fluvial terrace development in the Allier basin (Limagne. France). Earth Surface Processes and Landforms 17:487500.CrossRefGoogle Scholar
Veldkamp, A. & Van den Berg, M.W., 1993. Three-dimensional modelling of Quaternary fluvial dynamics in a climo-tectonic dependent system. A case study of the Maas record (Maastricht, The Netherlands). Global and Planetary Change 8: 203218.Google Scholar
Veldkamp, A. & Van Dijke, J.J., 1998. Modelling long-term erosion and sedimentation processes in fluvial systems: A case study for the Allier/Loire system. In: Benito, G., Baker, V.R. & Gregory, K.J. (eds): Palaeohydrology and environmental change. Wiley (Chichester): 5366.Google Scholar
Veldkamp, A. & Van Dijke, J.J., 2000. Simulating internal and external controls on fluvial terrace stratigraphy: a qualitative comparison with the Maas record. Geomorphology 33: 225236.CrossRefGoogle Scholar
Voigt, E., 1997. Western Atlas: Zusammenfassender Abschlußbericht der Struktur- und Kluftauswertung der CBIL imagedat-en des Projektes Morsleben. PESG-248.Google Scholar
Westaway, R., 2001. Flow in the lower continental crust as a mechanism for the Quaternary uplift of the Rhenish Massif, northwest Europe. In: Maddy, D., Macklin, M. & Woodward, J. (eds.): River Basin Sediment Systems: Archives of Environmental Change. Balkema (Rotterdam): 71151.Google Scholar
Westaway, R., Maddy, D. & Bridgland, D., 2001. Flow in the lower continental crust as a mechanism for the Quaternary uplift of southeast England: constraints from the Thames record. Quaternary Science Reviews 79: 2336.Google Scholar