Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T11:34:49.583Z Has data issue: false hasContentIssue false

Provenance of basalt blocks from Roman sites in Vleuten-De Meern (the Netherlands) traced to the Tertiary Siebengebirge (Germany): a geoarchaeological quest using petrological and geochemical methods

Published online by Cambridge University Press:  24 March 2014

K. Linthout*
Affiliation:
Institute for Geo & Bioarcheology, Faculty of Earth & Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
H. Paulick
Affiliation:
Steinmann Institut für Geologie, Mineralogie und Paläontologie, Poppelsdorfer Schloss, Universität Bonn, D - 53115, Germany
J.R. Wijbrans
Affiliation:
Department of Isotope Geochemistry, Faculty of Earth & Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Unshaped basalt blocks from archaeological sites along the border of the Roman Empire (limes) in the lower Rhine area near Vleuten-De Meern (Utrecht) have been studied petrographically, analysed by XRF for major and trace elements, and dated by the 40Ar/39Ar method. The blocks are from a revetment in the bank of a fossil branch of the Rhine and a contiguous ship De Meern 4, both built around 100 AD. All nineteen blocks are alkali olivine basalt (AOB) with xenoliths of peridotite derived from the upper mantle and quartz xenocrysts from the continental crust; eighteen blocks contain resorbed plagioclase xenocrysts as well. Abundances of major and trace elements show that those eighteen samples form a chemically coherent group. The outlier, different in chemistry and without plagioclase xenocrysts, is from the ship. A basalt block from ship De Meern 1 (148 AD) conforms compositionally to the defined group. AOB lumps from a limes watchtower (2nd-3rd century) form a chemically distinct group.

Low SiO2 contents (<46 wt.%) and high abundances of Mg, Ti, Ni, and Sr indicate a within-plate origin, directly from primitive melts; proportions of selected trace elements point at a continental rift setting. In the archaeological context, the most likely source region for the blocks is the Cenozoic European Volcanic Province, upstream along the Rhine and its tributaries.

The petrographic and analytical data of the blocks have been compared with 432 published analyses of German AOB. On petrographic grounds, the Eifel can be ruled out as a source area since typical Eifel basalt minerals, amphibole, biotite, K-feldspar and feldspatoids, are absent in the blocks. Applying seven geochemical criteria, based on abundances of major elements in the Roman blocks, twelve sites with matching AOB were found in the Siebengebirge, seven in the Vogelsberg, and one in the Westerwald.

The ages of the blocks (26.3 - 28.5 Ma) are compatible with ages determined for AOB from the Siebengebirge (27.4 - 29.9 Ma), and preclude their provenance from the Vogelsberg (< 18 Ma). The matching Westerwald sample is from 60 km beyond the limes, a prohibitive distance from the perspective of Roman logistics.

AOB quarries of optimal logistic position are located adjacent to the Rhine, between Bonn and Remagen, a zone with significant Roman settlements from the first century AD. Geochemical correlation indicates AOB bodies at Rolandsbogen and Godesburg (S of Bonn) as potential sources of the blocks from the 100 AD revetment and ships. Similarly, the Erpeler Ley (E of Remagen) is indicated as the likely source for the blocks from a 2nd-3rd century AD watchtower.

As the Godesburg basalt is at 1.6 km from the Rhine today, it is not obvious how the blocks were transported from there. However, it may be that the adjacent, now sanded, branch of the old Rhine river system, was navigable for flat-bottomed vessels in Roman times.

Our study demonstrates that substantial detailed information regarding ancient mining and trading activities can be retrieved from seemingly indistinctive basalt blocks.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2009

References

Bogaard, P.J.F. & Wörner, G., 2003. Petrogenesis of basanitic to tholeitic volcanic rocks from the Miocene Vogelsberg, Central Germany, Journal of Petrology 44: 569602; and electronic appendix at www.petrologt.oupjournals.org. Google Scholar
Bogaard, P.J.F., Jabri, L. & Wörner, G., 2001. Chemical alteration of basalts from the drill core ‘Forschungsbohrung Vogelsberg 1996’, Germany. In: Hoppe, A. & Schulz, R., (eds): Die Forschungsbohrung Vogelsberg 1996 – Einblicke in einen Miocänen Vulkankomplex. – Geol. Abh. Hessen 107. Hessisches Landesamt für Umwelt und Geologie (Wiesbaden): 101118.Google Scholar
Cabanic, B. & Lecolle, M., 1989. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendues de la Academie des Sciences, Série II, 309: 20232029.Google Scholar
De Groot, T & Morel, J.-M.A.W. (eds), 2007. Het schip uit de Romeinse tijd De Meern 4 nabij boerderij de Balije, Leidsche Rijn, Gemeente Utrecht. Rapportage Archeologische Monumentenzorg 147. RACM (Amersfoort): 173 pp.Google Scholar
Ehrenberg, K.-H. & Hickethier, H., 1994. Tertiärer Vulkanismus der Wasserkuppenrhön und Kuppenrhön. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins 76: 83146.Google Scholar
Gerlach, R., 2001. Die Bedeutung der geologischen Geschichte Bonns für die Römer. In: Van Rey, M. (ed.): Bonn von der Vorgeschichte bis zum Ende der Römerzeit, Band 1 (Bundesstadt Bonn Stadtarchiv und Stadthistorische Bibliothek): 2731.Google Scholar
Grunert, J., 1988. Geomorphologische Karte des Bonner Raumes. Arbeiten zur rheinischen Landeskunde, Geographisches Institut, Universität Bonn, 58: 165180.Google Scholar
Haase, K.M., Goldschmidt, B. & Garbe-Schönberg, C.-D., 2004. Petrogenesis of tertiary continental intraplate lavas from the Westerwald region, Germany. Journal of Petrology 45: 883905; and electronic appendix at www.petrologt.oupjournals.org. Google Scholar
Horn, H.G., 1987. Das Leben im römischen Rheinland. In: Horn, H.G. (eds.): Die Römer in Nordrhein-Westfalen. Konrad Theiss Verlag (Stuttgart): 139317.Google Scholar
Huckenholz, H.-G., 1983. Tertiary volcanism of the Hocheifel Area. In: Fuchs, K. et al. (eds): Plateau Uplift. Springer-Verlag (Berlin-Heidelberg): 121128.Google Scholar
Huckenholz, H.-G. & Büchel, G., 1988. Tertiärer Vulkanismus der Hocheifel. Fortschritte der Mineralogie 66, Beiheft 2: 4382.Google Scholar
Hughes, Ch.J., 1982. Igneous petrology. Developments in petrology 7. Elsevier Scientific Publishing Company (Amsterdam): 551 pp.Google Scholar
Irvine, T.N. & Baragar, W.R.A., 1971. A guide to the chemical classification of igneous rocks. Canadian Journal of Earth Sciences 8: 523548.Google Scholar
Jansma, E., 2007. Datering, herkomst en bouwvolgorde van De Meern 4. In: Jansma, E. & Morel, M.A.W. (eds): Een Romeinse Rijnaak, gevonden in Utrecht-De Meer; resultaten van het onderzoek naar de platbodem ‘De Meern 1’. Rapportage Archeologische Monumentenzorg 144. RACM (Amersfoort): 6977.Google Scholar
Jansma, E. & Morel, M.A.W. (eds), 2007. Een Romeinse Rijnaak, gevonden in Utrecht-De Meer; resultaten van het onderzoek naar de platbodem ‘De Meern 1’. Rapportage Archeologische Monumentenzorg 144. RACM (Amersfoort): 531 pp. & 4 folders.Google Scholar
Kars, E., Linthout, K., Vos, W. & Graafstal, E., 2001. Basalt als bouwsteen langs de Limes. Stichting voor de Nederlandse Archeologie, 31ste SNA-Reuvensdagen, Almere, 8-9 11 2001: 16.Google Scholar
Koppers, A.A.P., Staudigel, H., Wijbrans, J.R., 2000. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique. Chemical Geology 166: 139158.Google Scholar
Laanbroek, J.H.H., 2004. Natuurlijke bouwstenen van een romeinse wachttoren in Vleuten-De Meern. Bachelor thesis, Department of Petrology, Vrije Universiteit Amsterdam: 31 pp.Google Scholar
LeBas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B., 1986. A chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology 27: 745750.Google Scholar
Le Maitre, R.W. (ed.), 1989. A classification of igneous rocks and glossary of terms. Blackwell (Oxford): 193 pp.Google Scholar
Lippolt, H.J., 1983. Distribution of the volcanic activity in space and time. In: Fuchs, K., et al. (eds): Plateau Uplift. Springer-Verlag (Berlin Heidelberg): 112120.Google Scholar
McBirney, A.R., 1985. Igneous petrology. Oxford University Press (Oxford): 508 pp.Google Scholar
Mertes, H. & Schmincke, H.-U., 1985. Mafic potassic lavas of the Quaternary West Eifel volcanic field. I. Major and trace elements. Contributions to Mineralogy and Petrology 89: 330345.Google Scholar
Morel, J.-M.A.W., 2007. De eerste waarnemingen van 2003. In: De Groot, T. & Morel, J.-M.A.W. (eds), 2007: Het schip uit de Romeinse tijd De Meern 4 nabij boerderij de Balije, Leidsche Rijn, Gemeente Utrecht. Rapportage Archeologische Monumentenzorg 147. RACM (Amersfoort): 2128.Google Scholar
Nesbitt, H.W. & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715717.Google Scholar
Middlemost, E.A.K., 1989. Iron oxidation ratios, norms and the classification of volcanic rocks. Chemical Geology 77: 1926.Google Scholar
Oskarsson, N., Sigvaldson, G.E. & Steinthorsson, S., 1982. A dynamic model of rift zone petrogenesis and regional petrology of Iceland. Journal of Petrology 23: 2874.Google Scholar
Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T.L. & DePaolo, D.J., 1998. Intercalibration of standards, absolute ages and uncertainties in Ar-40/Ar-39 dating. Chemical Geology 145: 117152.Google Scholar
Rey, M. (ed.), 2001. Bonn von der Vorgeschichte bis zum Ende der Römerzeit. Band 1, Bundesstadt Bonn Stadtarchiv und Stadthistorische Bibliothek: pp. 371.Google Scholar
Röder, J., 1974. Römische Steinbruchtätigkeit am Drachenfels. Bonner Jahrbuch des Rheinischen Landesmuseums in Bonn 174: 509544.Google Scholar
Schmincke, H.-U., Lorenz, V. & Seck, H.A., 1983. The Quaternary Eifel Volcanic Fields. In: Fuchs, K., et al. (eds): Plateau Uplift. Springer-Verlag (Berlin Heidelberg): 139151.Google Scholar
Steiger, R.H. & Jäger, E., 1977. Subcommission on Geochronology – Convention on use of Decay Constants in Geochronology and Cosmochronology. Earth and Planetary Science Letters 36: 359362.Google Scholar
Sun, S.-S. & McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. & Norry, M.J. (eds.): Magmatism in the ocean basins. Geological Society, London, Special Publications 42: 313345.Google Scholar
Todt, W. & Lippolt, H.J., 1980. K-Ar age determinations on Tertiary volcanic rocks: V. Siebengebirge, Siebengebirge-Graben. Journal of Geophysics 48: 1827.Google Scholar
Van Dinter, M., & Graafstal, E.P., 2007. Landschap en militaire infrastructuur rond het schip. In: Jansma, E. & Morel, J.-M.A.W. (eds): Een Romeinse Rijnaak, gevonden in Utrecht-De Meer; resultaten van het onderzoek naar de platbodem ‘De Meern 1’. Rapportage Archeologische Monumentenzorg 144. RACM (Amersfoort): 1736.Google Scholar
Vieten, K., 1987. Abschlußbericht an die Deutsche Forschungsgemeinschaft zum Projekt: Raum-Stoff-Plan der tertiären Alkalibasalte in der nördlichen Mittelrhein-Region (VI-75/3), University of Bonn: 91 pp.Google Scholar
Vieten, K, Hamm, H.M. & Grimeisen, W., 1988. Tertiärer Vulkanismus des Siebengebirges. Fortschritte der Mineralogie 66, Beiheft 2: 142.Google Scholar
Wedepohl, K.H., 1983. Die chemische Zusammensetzung der basaltischen Gesteine der nördlichen Hessische Senke und ihrer Umgebung. Geologisches Jahrbuch Hessen 111: 261302.Google Scholar
Wedepohl, K.H. & Baumann, A., 1999. Central European Cenozoic plume volcanism with OIB characteristics and indications of a lower mantle source. Contributions to Mineralogy and Petrology 136: 225239.Google Scholar
Wedepohl, K.H., Gohn, E. & Hartmann, G., 1994. Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. Contributions to Mineralogy and Petrology 115: 253278.Google Scholar
Wijbrans, J.R., Pringle, M.S., Koppers, A.A.P. & Scheveers, R., 1995. Argon geochronology of small samples using the Vulkaan argon laserprobe. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen 98 (2): 185218.Google Scholar
Wilkinson, J.F.G., 1982. The genesis of mid-ocean ridge basalt. Earth Science Review 18: 157.Google Scholar
Winter, J.D., 2001. An introduction to igneous and metamorphic petrology. Prentice-Hall International Ltd. (London): 697 pp.Google Scholar
Ziegler, P.A., 1992. European Cenozoic rift system. Tectonophysics 208: 91111.Google Scholar