Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T09:55:41.920Z Has data issue: false hasContentIssue false

Palaeoseismic investigations in Belgian eaves

Published online by Cambridge University Press:  01 April 2016

S. Delaby*
Affiliation:
Scientific research worker FNRS, Faculté Polytechnique de Mons (CERAK, GFA), rue de Houdain, 9, B-7000 Mons; e-mail : [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In some karstic caves, the observation of numerous broken stalagmites may provide potential secondary evidence for intense palaeoearthquakes during recent past times. We have named these morpho-sedimentologic features seismothems. A methodology has been developed to discriminate broken speleothems due to earthquake-induced effects or caused by other mechanisms. A study has been carried out in the Belgian karst areas. In the Vesdre Valley, it seems difficult to find evidence of the well-known Verviers earthquake, probably the most destructive historical earthquake known in Belgium which occurred in 1692 AD. The most important concentration of broken stalagmites was discovered in the caves between Hotton and Han-sur-Lesse. The observations in the cave of Hotton suggest a seismic origin, the other origins can not be the cause of the speleothem break. This result implies a strong earthquake situated close to the cave. A preliminary AMS 14C age suggests a minimum age of 10100 ±1200 cal 14C yr BR for one stalagmite rupture in the Hotton cave.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2001

References

Cadorin, JF., Jongmans, D., Plumier, A., Camelbeeck, T., Delaby, S. & Quinif, Y., 2001. Modelling of speleothems faiture in the Hotton cave (Belgium). Is the failure earthquake induced? Netherlands Journal of Geosciences / Geologie en Mijnbouw, 2001,80, 315321.Google Scholar
Camelbeeck, T., 1998. Speleothems as palaeoseismics indicators : the point of view of a seismologist. Spéléochronos hors série : 2324.Google Scholar
Delaby, S., 1999. Etude statistique de l’enregistrement paléosis-mique par les spéléothèmes. L’exemple de la grotte de Hotton (Belgique). ‘Karst 99’. Etudes de géographie physique, travaux 1999 -suppl. n°XXVIII, CAGEP, Université de Provence : 7376.Google Scholar
Forti, P. & Postpischl, D., 1984. Sismotectonic and paleoseismic analyses using karst sediments. Marine Geology 55 : 145161.Google Scholar
Genty, D. & Quinif, Y., 1996. Annually laminated sequences in the internal structure of some Belgian Stalagmites – Importance for palaeoclimatology. Journal of Sedimentary Research 66(1) : 275288.Google Scholar
Genty, D., Vokal, B., Obelic, B. & Massault, M., 1998. Bomb 14C time history recorded in two modern stalagmites. Importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters 160 : 795809.Google Scholar
Genty, D., 2001. Dating of speleothems. Cahiers du Centre Européen de Géodynamique et de Séismologie, Conseil de l’Europe 18 : 7376.Google Scholar
Gilli, E., 1998. Bilan des recherches du CEK sur l’enregistrement naturel des effets sismo-tectoniques dans l’endokarst. Spéléochronos hors série : 9193.Google Scholar
Gilli, E., Levret, A., Sollogoup, P. & Delange, P., 1999. Research on the February 18, 1996 earthquake in the cave of Saint-Paul-de-Fenouillet area, (eastern Pyrénées, France). Geodinamica Acta 12/3–4: 143158.Google Scholar
Gospodaric, R., 1977. Collapsing of speleothems in Postajna Cave system. Proc. 7th Int. Speleol. Congr. Sheffield : 223225.Google Scholar
Lacave, C, Roller, M. & Levret, A., 2001. Measurement of natural frequencies and damping of speleothems. Revue d’Analyse Spatiale Quantitative et Appliquée. Numéro spécial : 99104.Google Scholar
Lemeille, F., Cushing, M., Carbon, D., Grellet, B., Bitterli, T., Flehoc, C. & Innocent, C., 1999. Co-seismic ruptures and deformations recorderd by speleothems in the epicentral zone of the Basel earthquake. Geodinamica Acta 12/3–4 : 179192.Google Scholar
Li, W.X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P., Mcnutt, R. & Williams, D., 1989. High-precision mass-spectro-metric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature 339 : 534536.Google Scholar
Moser, M & Geyer, M., 1979. Seismospeläologie – Erdbebenzer-störungen in Höhlen am Beispiel des Gaislochs bei Oberfellen-dorf (Oberfranken, Bayern). Die Höhlen 30/4: 89102.Google Scholar
Postpischl, D., Agostino, S., Forti, P. & Quinif, Y., 1991. Palaeoseismicity from karst sediments : the «Grotta del Cervo» cave case study (Central Italy). Tectonophysics 193 : 3344.Google Scholar
Quinif, Y., 1977. Étude synthétique des cavités karstiques de Belgique. Rev. Belg. Géogr., 101 (1–3) : 115173.Google Scholar
Quinif, Y. & Bastin, B., 1989. Ways and chronology of the underground sedimentation in Belgium in Middle and Upper Pleistocène. Acta Carsologica, XVIII 7187.Google Scholar
Quinif, Y., 1993. La grotte de Hotton et les datations U/Th. Regards 14:2428.Google Scholar
Quinif, Y., 1996. Enregistrement et datation des effets sismo-tec-toniques par l’étude des spéléothèmes. Annale de la Société Géologique de Belgique 119 : 113.Google Scholar
Quinif, Y., 2001. Cahiers du Centre Européen de Géodynamique et de Séismologie, Conseil de l’Europe 18 : 121124.Google Scholar
Struiver, M & Kra, R.S., 1986. Radiocarbon 28 : 8051030.Google Scholar
Vandycke, S., Dejonghe, L., Delaby, S. & Hance, L., 2001. Structural analysis in term of paleostress of the Givetian limestones around the Hotton cave. Cahiers du Centre Européen de Géodynamique et de Séismologie, Conseil de l’Europe 18 : 146146.Google Scholar