Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T04:46:21.196Z Has data issue: false hasContentIssue false

The origin of brackish and saline groundwater in the coastal area of the Netherlands

Published online by Cambridge University Press:  01 April 2016

V.E.A. Post*
Affiliation:
Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Hydrology and Hydrogeology, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; e-mail:[email protected]
H. Van der Plicht
Affiliation:
Rijksuniversiteit Groningen, Centre for Isotope Research, Nijenborgh 4, 9747 AG, Groningen, The Netherlands; e-mail:[email protected]
H.A.J. Meijer
Affiliation:
Rijksuniversiteit Groningen, Centre for Isotope Research, Nijenborgh 4, 9747 AG, Groningen, The Netherlands; e-mail:[email protected]
*
*Corresponding author

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An explanation is presented for the origin of brackish to saline groundwater in the coastal area of the Netherlands based on geological, chemical (chlorinity), isotopic and geophysical data. A critical review of all possible salinization mechanisms shows that the origin of the brackish water is related to former transgressions. Both the vertical salinity distribution and the carbon-14 activity of the groundwater indicate that connate sea water from the Pliocene to Early Pleistocene is not the source of the brackish to saline waters in the overlying Pleistocene fluvial aquifers. Instead, it derives from Holocene transgressions. The salinization mechanism is discussed in relation to the paleogeographical development during the Holocene and the occurrence of low-permeability strata. Finally, freshening of the aquifers following retreat of the sea is briefly considered.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2003

References

Appelo, C.A.J. & Geirnaert, W., 1991. Processes accompanying the intrusion of salt water. In: De Breuck, W. (ed.).: Hydrogeology of salt water intrusion: A selection of SWIM papers. International Contributions to Hydrogeology. Verlag Heinz Heise (Hannover, Germany): 291–303.Google Scholar
Bath, A.H., Edmunds, W.M. & Andrews, J.N., 1978. Paleoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom, Isotope hydrology 1978. International Atomic Energy Agency (Vienna, Neuherberg): 545–568.Google Scholar
Beekman, H.E., 1991. Ion chromatography of fresh- and seawater intrusion. PhD Thesis, Vrije Universiteit (Amsterdam, The Netherlands): 198 pp.Google Scholar
Beets, D.J., Van der Valk, L. & Stive, M.J.F., 1992. Holocene evolution of the coast of Holland. Marine geology 103: 423–443.CrossRefGoogle Scholar
Bein, A. & Arad, A., 1992. Formation of saline groundwaters in the Baltic region through freezing of seawater during glacial periods. Journal of Hydrology 140: 75–87.Google Scholar
Bottomley, D.J., Katz, A., Chan, L.H., Starinsky, A., Douglas, M., Clark, I.D. & Raven, K.G., 1999. The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chemical Geology 155: 295–320.CrossRefGoogle Scholar
Broers, H.P. & Griffioen, J., 1992. Het grondwaterkwaliteitsmeetnet van de provincie Noord-Brabant: opzet en eerste resultaten. H2O 25: 728–735.Google Scholar
De Breuck, W., 1991. Hydrogeology of Salt Water Intrusion. International contributions to Hydrogeology 11. Verlag Heinz Heise (Hannover, Germany): 422 pp.Google Scholar
De Gans, W. De Groot, T. & Zwaan, H., 1986. The Amsterdam basin, a case study of a glacial basin in The Netherlands, INQUA Symposium on the genesis and lithology of glacial deposits, Amsterdam: 205–216.Google Scholar
De Gans, W. & Van Gijssel, K., 1996. The late Weichselian morphology of the Netherlands and its influence on the Holocene coastal development. In: Beets, D.J., Fischer, M.M. & De Gans, W. (eds).: Coastal studies on the Holocene of the Netherlands. Mededelingen Rijks Geologische Dienst 57: 11–25.Google Scholar
De Louw, P.G.B., Griffioen, J. & Van den Eertwegh, G.A.P.H., 2000. High nutrient and chloride loads to surface waters in polder areas due to groundwater seepage. In: Sililo, O. (ed.): Groundwater: Past Achievements and Future Challenges. A.A. Balkema (Rotterdam): 418–486.Google Scholar
De Vries, J.J., 1974. Groundwater flow systems and stream nets in the Netherlands. PhD. Thesis, Vrije Universiteit (Amsterdam, The Netherlands): 226 pp.Google Scholar
De Vries, J.J., 1981. Fresh and salt groundwater in the Dutch coastal area in relation to geomorphological evolution. In: Van Loon, A.J. (ed.): Quaternary geology: a farewell to A.J. Wiggers. Geologie en Mijnbouw 60: 363–368.Google Scholar
Dufour, F.C., 2000. Ground water in the Netherlands, facts and figures. Netherlands Institute of Applied Geoscience TNO - National Geological Survey (Delft/Utrecht, The Netherlands): 96 pp.Google Scholar
Engelen, G.B. & De Ruiter-Peltzer, J.C., 1986. A case study of regional hydrological systems and fresh-salt water interaction in the Western part of The Netherlands. In: Boekelman, R.H., Van Dam, J.C., Evertman, M. & Ten Hoorn, W.H.C. (eds): Proceedings 9th Salt Water Intrusion Meeting. Delft University of Technology (Delft, The Netherlands): 177–191.Google Scholar
Geenen, A., 1993. 3-Dimensionale interpolatie van het chloridegehalte van het grondwater in de Amsterdamse Waterleidingduinen, Gemeentewaterleidingen (Amsterdam, The Netherlands): 65 pp.Google Scholar
Gieske, J.M.J., 1991. De oorsprong van het brakke grondwater in het IJsselmeergebied: diffusie, dispersie, of dichtheidsstroming. H2O 24: 189–193.Google Scholar
Glasbergen, P., 1981. Extreme salt concentrations in deep aquifers in the Netherlands. In: Van Duijvenbooden, W., Glasbergen, P. & Van Lelyveld, H. (eds): Quality of groundwater, Proceedings of an International Symposium. Studies in Environmental Science. Elsevier Scientific Publishing Company: 687–695.Google Scholar
Glasbergen, P. & Mook, W.G., 1982. Natuurlijke isotopen als een hulpmiddel bij regionaal geohydrologisch onderzoek in de provincie Groningen. H2O 26: 682–704.Google Scholar
Groen, J., Velstra, J. & Meesters, A.G.C.A., 2000. Salinization processes in paleowaters in coastal sediments of Suriname: evidence from ?37Cl analysis and diffusion modelling. Journal of Hydrology 234: 1–20.Google Scholar
Herut, B., Starinsky, A., Katz, A. & Bein, A., 1990. The role of seawater freezing in the formation of subsurface brines. Geochimica et Cosmochimica Acta 54: 13–21.Google Scholar
Holzbecher, E.O., 1998. Modeling density-driven flow in porous media. Springer (Berlin, Germany): 286 pp.Google Scholar
Hoogendoorn, J.H., 1985. De zoet-zout-verdeling van het grondwater in Nederland. Deel 3a. Een case study. OS 85–33, Dienst Grondwaterverkenning TNO: 61 pp.Google Scholar
Keijzer, T.J.S., 2000. Chemical osmosis in natural clayey minerals. PhD Thesis, Utrecht University (Utrecht, The Netherlands): 166 pp.Google Scholar
Kooi, H. & De Vries, J.J., 1998. Land subsidence and hydrodynamic compaction of sedimentary basins. Hydrology and Earth System Sciences 2: 159–171.Google Scholar
Meinardi, C.R., 1991. The origin of brackish groundwater in the lower parts of The Netherlands. In: De Breuck, W. (ed.): Hydrogeology of salt water intrusion: A selection of SWIM papers. International Contributions to Hydrogeology. Verlag Heinz Heise (Hannover, Germany): 271–290.Google Scholar
Oude Essink, G.H.P., 1996. Impact of sea level rise on groundwater flow regimes. PhD Thesis, Delft University Press (Delft, The Netherlands): 411 pp.Google Scholar
Ouwerkerk, J., 1993. Beschrijving van de chemie van het grondwater van Zeeland en van Walcheren en Zuid-Beveland in het bijzonder, Provincie Zeeland, directie Milieu en Waterstaat (Middelburg, The Netherlands): 89 pp.Google Scholar
Pomper, A.B., 1978. An estimation of chloride intrusion in the Midwest Netherlands during the Pleistocene Epoch, Proceedings 5th Salt Water Intrusion Meeting - Medmenham, Great Britain: 114–125.Google Scholar
Pomper, A.B., 1981. A possible explanation of the occurrence of inversions in the chloride content of groundwater in the western Netherlands, Proceedings 6th Salt Water Intrusion Meeting. Geologisches Jahrbuch Reihe C: Hydrogeologie, Ingenieurgeologie: 205–215.Google Scholar
Pomper, A.B., 1983. The geohydrological situation of the western part of the Netherlands. In: Van den Berg, M.W. & Felix, R. (eds): Special issue in the honour of J.D. de Jong. Geologie en Mijnbouw 62: 519–528.Google Scholar
Pons, L.J., 1992. Holocene peat formation in the lower parts of the Netherlands. In: Verhoeven, J.T.A. (ed.): Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and conservation. Kluwer Academic Publishers (Dordrecht, The Netherlands): 7–79.Google Scholar
Pons, L.J., Jelgersma, S., Wiggers, A.J. & De Jong, J.D., 1963. Evolution of the Netherlands coastal area during the Holocene. Verhandelingen van het Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap, Geol. Serie 21: 197–208.Google Scholar
Post, V.E.A., Hooijboer, A.E.J., Groen, J., Gieske, J.M.J. & Kooi, H., 2000. Pore water chemistry of clay layers in the southern North Sea: clues to the hydrogeological evolution of coastal areas. In: Sadurski, A. (ed.): Proceedings 16th Salt Water Intrusion Meeting. Nicholas Copernicus University (Torun, Poland): 127–131.Google Scholar
Ridder, T.B., Baard, J.H. & Buishand, T.A., 1984. De invloed van monstermethoden en analysetechnieken op gemeten chemische concentraties in regenwater. Technische rapporten T.R. 55, KNMI (De Bilt, The Netherlands).Google Scholar
Schot, P.P. & Molenaar, A., 1992. Regional changes in groundwater flow patterns and effects on groundwater composition. Journal of Hydrology 130: 151–170.Google Scholar
Stuyfzand, P.J., 1993. Hydrochemistry and hydrology of the coastal dune area of the western Netherlands. PhD Thesis, Vrije Universiteit (Amsterdam, The Netherlands): 366 pp.Google Scholar
Stuyfzand, P.J. & Stuurman, R.J., 1994. Recognition and genesis of various brackish to hypersaline groundwaters in the Netherlands. In: Barrocu, G. (ed.): Proceedings 13th Salt Water Intrusion Meeting, Villasimius (Cagliari, Italy): 125–136.Google Scholar
Van Dam, J.C., 1976. Possibilities and limitations of the resistivity method of geoelectrical prospecting in the solution of geohydrological problems. Geoexploration 14: 179–193.Google Scholar
Van der Meij, J.L. & Minnema, B., 1999. Modelling of the effect of a sea-level rise and land subsidence on the evolution of the groundwater density in the subsoil of the northern part of the Netherlands. Journal of Hydrology 226: 152–166.Google Scholar
Van der Schaaf, S., 1998. Anisotropie und Selbstregulierung bei Versickerungsverlusten in Hochmooren (Anisotropy and self adjustment in seepage losses from raised bogs). Telma 28: 131–144.Google Scholar
Van Dongen, P.G. & Boswinkel, J.A., 1982. De zoet-zoutverdeling van het grondwater in Nederland deel 2B - De interpretatie van boorgatmetingen met betrekking tot de overgangszone van zoet naar zout grondwater. OS 82–09, Dienst Grondwaterverkenning TNO: 73 pp.Google Scholar
Van Duijvenbooden, W. & Kooper, W.F., 1981. Effects on groundwater flow and groundwater quality of a waste disposal site in Noordwijk, The Netherlands. In: Van Duijvenbooden, W. Glasbergen, P. & Van Lelyveld, H. (eds): Quality of groundwater, Proceedings of an International Symposium. Studies in Environmental Science. Elsevier Scientific Publishing Company: 253–260.Google Scholar
Van Rees Vellinga, E., Toussaint, C.G. & Wit, K.E., 1981. Water quality and hydrology in a coastal region of the Netherlands. Journal of Hydrology 50: 105–127.CrossRefGoogle Scholar
Van Rossum, P., 1998. Mobilisatie en herkomst van arseen in de bodem van de provincie Noord-Holland, Vrije Universiteit (Amsterdam, The Netherlands): 94 pp.Google Scholar
Van Weert, F.H.A., Van Gijssel, K., Leijnse, A. & Boulton, G.S., 1997. The effects of Pleistocene glaciations on the geohydrological system of Northwest Europe. Journal of Hydrology 195: 137–159.Google Scholar
Vermeulen, A.J., 1977. Immissieonderzoek met behulp van regenvangers: opzet, ervaringen en resultaten, Provinciale Waterstaat van Noord-Holland, Haarlem: 109 pp.Google Scholar
Volker, A., 1961. Source of brackish ground water in Pleistocene formations beneath the Dutch polderland. Economic geology 56: 1045–1057.Google Scholar
Werkgroep Midden West-Nederland, 1976. Hydrologie en waterkwaliteit van Midden West-Nederland, 9. Instituut voor Cultuurtechniek en Waterhuishouding, Wageningen: 101 pp.Google Scholar
Zagwijn, W.H., 1974. The paleogeographic evolution of the Netherlands during the Quaternary. Geologie en Mijnbouw 53: 369–385.Google Scholar
Zagwijn, W.H., 1983. Sea level changes in the Netherlands during the Eemian. In: Van den Berg, M.W. & Felix, R. (eds): Special issue in the honour of J.D. de Jong. Geologie en Mijnbouw 62: 437–450.Google Scholar
Zagwijn, W.H., 1986. Nederland in het Holoceen. Geologie van Nederland, 1. Sdu uitgeverij (‘s Gravenhage, The Netherlands): 46 pp.Google Scholar
Zagwijn, W.H., 1989. The Netherlands during the Tertiary and the Quaternary: A case history of Coastal Lowland evolution. Geologie en Mijnbouw 68: 107–120.Google Scholar
Zagwijn, W.H. & Van Staalduinen, C.J., 1975. Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem, The Netherlands): 134 pp.Google Scholar
Zagwijn, W.H., Ruegg, G.H.J. & Cleveringa, P., 1992. Reconstructie paleohydrologische randvoorwaarden in het Noord-Nederlandse OPLA gebied. RGD Report 30.107/TRB4, Rijks Geologische Dienst (Haarlem, The Netherlands).Google Scholar