Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T03:22:06.551Z Has data issue: false hasContentIssue false

Natural compositional variation of the river Meuse (Maas) suspended load: a 13 ka bulk geochemical record from the upper Kreftenheye and Betuwe Formations in northern Limburg

Published online by Cambridge University Press:  01 April 2016

L.A. Tebbens*
Affiliation:
Laboratory of Soil Science and Geology, Wageningen Agricultural University, P.O. Box 37, 6700 AA WAGENINGEN, the Netherlands
A. Veldkamp
Affiliation:
Laboratory of Soil Science and Geology, Wageningen Agricultural University, P.O. Box 37, 6700 AA WAGENINGEN, the Netherlands e-mail:[email protected]
S.B. Kroonenberg
Affiliation:
Department of Applied Earth Sciences, Delft Technical University, Mijnbouwstraat 120, 2628 RX, DELFT, the Netherlands; e-mail: [email protected]
*
2corresponding author; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Unambiguously pristine and largely unpolluted sediments from the Late Weichselian and Holocene infillings of the Meuse residual channels in northern Limburg (the Netherlands) have been sampled to determine the natural compositional variation of the river’s suspended load.

Bulk geochemical and granulometric analyses demonstrate that about 70% of the variation can be ascribed to hydrodynamic mineral sorting. Clay- and fine silt-sized phyllosilicates are the most important deterministic features, hosting the bulk of AI2O3, TiO2, K2O, MgO and trace element variability (notably Ba, Cr, Ga, Rb and V). Quartz is abundant in the fine and coarse sand fractions. Na2O and the Zr-Nb-Nd-Y quartet relate to albitic feldspars and heavy minerals, respectively, in the coarse silt fraction. The granulometry should therefore be quantified if geochemical baseline data for a particular geological unit or region are drawn up and for the evaluation of potentially polluted sediments.

Although provenance has not changed, the composition of Meuse sediments cannot be considered constant over a time frame of 1000–10,000 years, due to climatic change. Weathering of phyllosilicates in both interstadial and interglacial soil environments and changing relative source-area contributions alter the detrital clay-mineral supply to raise the AI2O3 and lower the K2O and MgO contents in Holocene Meuse sediments. Early diagenetic siderite and vivianite formation in gyttjas causes relative accumulations of Fe2O3, MnO, P2O5, Co, Ni and notably Zn above the phyllosilicate background values. These accumulations are natural and show that sediments with elevated trace metal contents are not necessarily polluted. Very early atmospheric pollution in relation to ore mining and smelting activities in the Roman era, however, probably caused elevated Pb contents in Subatlantic humic clays and peat samples, long before the historic pollution of the Industrial Revolution started.

The A12O3, Fe2O3 and CaO contents are used to predict the trace-element values as a function of sample granulometry, siderite/vivianite and lime content, respectively. As such, they can provide a sound basis for environmental researchers to determine baseline values of heavy metals in bulk samples of fine-grained fluvial sediments.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Asselman, N. & Middelkoop, H., 1996. Smerig slib. Sedimentatie op de uiterwaarden. Geografie 5: 812.Google Scholar
Bain, D.C., Duthie, D.M.L. & Thomson, C.M., 1995. Rates and processes of mineral weathering in soils developed on greywackes and shales in the southern uplands of Scotland. Water, Air and Soil Pollution 85: 10691074.Google Scholar
Berendsen, H.J.A., Hoek, W.Z. & Schorn, E.A., 1995. LateWeich-selian and Holocene river channel changes of the rivers Rhine and Meuse in the Netherlands (Land van Maas en Waal). In: Frenzel, B., Vandenberghe, J., Kasse, C. Bohncke, S. & Gläser, B. (eds): Paläoklimaforschung/Palaeoclimate Research 14: 151171.Google Scholar
Bleichrodt, G. & Ensinck, E.F.J.M., 1994. De Maas slaat toe. Verslag hoogwater Maas December 1993. Internal Report Ministerie van Verkeer en Waterstaat, Directie Limburg (Maastricht): 32 pp.Google Scholar
Berner, R.A., Cochran, M.F., Moulton, K. & Rao, J.-L. 1996. The quantitative role of plants in silicate weathering (ext. abstr.). In: Bottrell, S.H. (ed.): Proceedings of the Fourth International Symposium on the Geochemistry of the Earth’s Surface. University of Leeds(Leeds): 513516.Google Scholar
Bustamante, S.C.L., 1976. L’évolution Plio-Pléistocène du basin Mosa d’après ses minéraux lourds. Revue de Géographie Physique et de Géologie Dynamique 18: 291300.Google Scholar
Buurman, P., Pape, Th. & Muggier, C.C., 1997. Laser grain-size determination in soil genetic studies. 1. Practical problems. Soil Science 162:211218.Google Scholar
Chamley, H., 1989. Clay sedimentology. Springer Verlag (Berlin): 620 pp.Google Scholar
Curtis, C.D., 1990. Aspects of climatic influence on the clay mineralogy and geochemistry of soils, palaeosols and clastic sedimentary rocks. Journal of the Geological Society 147: 351357.Google Scholar
Curtis, C.D., 1995. Post-depositional evolution of mudstones 1: early days and parental influences. Journal of the Geological Society 152: 577586.Google Scholar
Darnley, A.G., 1997. A global geochemical reference network: the foundation for geochemical baselines. Journal of Geochemical Exploration 60: 15.Google Scholar
Darnley, A.G., Björklund, A., Bølviken, B., Gustavsson, N., Koval, P.V. Plant, J.A., Steenfelt, A., Tauchid, M., Xuejing, X., Garrett, R.G. & Hall, G.E.M. 1995. A global geochemical database for environmental and resource management. Recommendations for International Geochemical Mapping. Final report of IGCP Project 259. UNESCO (Paris): 122 pp.Google Scholar
Doppert, J.W.Chr., Ruegg, G.H.J., Van Staalduinen, C.J., Zagwijn, W.H. & Zandstra, J.G., 1975. Formaties van het Kwartair en Boven Tertiair in Nederland. In: Zagwijn, W.H. & Van Staalduinen, C.J. (eds.): Toelichting bij geologische overzichtskaarten van Nederland. Rijks Geologische Dienst (Haarlem): 1176.Google Scholar
Goudriaan, J., 1995. De Maas slaat weer toe. Verslag hoogwater Maas januari/februari 1995. Internal Report Ministerie van Verkeer en Waterstaat, Directie Limburg (Maastricht): 31 pp.Google Scholar
Hakstege, A.L., Kroonenberg, S.B. & Van Wijck, H. 1993. Geochemistry of Holocene clays of the Rhine and Meuse rivers in the central-eastern Netherlands. Geologie en Mijnbouw 71: 301315.Google Scholar
Hill, D.M. & Aplin, A.C. 1996. Role of colloids as carriers of metals in river waters (ext. abstr.). In: Bottrell, S.H. (ed.): Proceedings of the Fourth International Symposium on the Geochemistry of the Earth’s Surface. University of Leeds (Leeds): 534536.Google Scholar
Hindel, R., Schalich, J., De Vos, W., Ebbing, J., Swennen, R. & Van Keer, I., 1996. Vertical distribution of elements in overbank sediment profiles from Belgium, Germany and The Netherlands. Journal of Geochemical Exploration 56: 105122.CrossRefGoogle Scholar
Hong, S., Candelone, J.-P., Patterson, C.C. & Boutron, C.F., 1994. Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265: 18411843.CrossRefGoogle ScholarPubMed
Huisink, M., 1997. Late Glacial sedimentological and morphological changes in a lowland river in response to climatic change; the Maas, southern Netherlands. Journal of Quaternary Science 12: 209223.3.0.CO;2-P>CrossRefGoogle Scholar
Huisman, D.J., 1997. Geochemical characterization of subsurface sediments in the Netherlands. Ph.D. thesis Wageningen Agricultural University: 175 pp.Google Scholar
Huisman, D.J. & Kiden, P., 1998. A geochemical record of Late Cenozoic sedimentation history in the southern Netherlands. Geologie en Mijnbouw 76: 277292.Google Scholar
Kasse, C. Vandenberghe, J. & Bohncke, S.J.P. 1995. Climatic change and fluvial dynamics of the Maas during the Late Weich-selian and Early Holocene. In: Frenzel, B., Vandenberghe, J., Kasse, C. Bohncke, S. & Gläser, B. (eds.): Paläoklimaforschung/Palaeoclimate Research 14: 123150.Google Scholar
Korobova, E.M., Veldkamp, A., Keiner, P. & Kroonenberg, S.B., 1997. Element partitioning in sediment, soil and vegetation in an alluvial terrace chronosequence, Limagne rift valley, France: a landscape geochemical study. Catena 31:91117.Google Scholar
Kroonenberg, S.B., 1990. Geochemistry of Quaternary fluvial sands from different tectonic regimes. Chemical Geology 84: 8890.CrossRefGoogle Scholar
Kroonenberg, S.B., 1994. Effect of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In: Kumon, F. & Yu, K.M. (eds.): Proceedings of the 29th International Geological Congress 1992 (Kyoto), A: 6981.Google Scholar
Leenaers, H., 1989. The dispersal of metal mining waste in the catchment of the River Geul, Belgium - The Netherlands. Netherlands Geographical Studies 102: 1230.Google Scholar
Macklin, M.G., Ridgway, J., Passmore, D.G. & Rumsby, B.T., 1994. The use of overbank sediment for geochemical mapping and contamination assessment: results from selected English and Welsh floodplains. Applied Geochemistry 9: 689700.CrossRefGoogle Scholar
Makaske, B. & Nap, R.L., 1995. A transition from a braided to a meandering channel facies, showing inclined heterolithic stratification (Late Weichselian, central Netherlands). Geologie en Mijnbouw 74: 1320.Google Scholar
Moura, M.L. & Kroonenberg, S.B., 1990. Geochemistry of Quaternary fluvial and aeolian sediments in the southeastern Netherlands. Geologie en Mijnbouw 69: 359373.Google Scholar
Ottesen, R.T., Bogen, J., Bølviken, B. & Volden, T., 1989. Overbank sediment: a representative sample medium for geochemical mapping. Journal of Geochemical Exploration 32: 257277.CrossRefGoogle Scholar
Plant, J.A., Klaver, G., Locutura, J., Salminen, R., Vrana, K. & Fordyce, F.M., 1997. The Forum of Geological Surveys Geochemistry Task Group inventory 1994–1996. Journal of Geochemical Exploration 59: 123146.CrossRefGoogle Scholar
Postma, D., 1982. Pyrite and siderite formation in brackish and freshwater swamp sediments. American Journal of Science 282: 11511183.Google Scholar
Poulton, S.W. & Raiswell, R., 1996. Suspended river particulates as a potential source of iron for pyrite formation (ext. abstr). In: Bottrell, S.H. (ed.): Proceedings of the Fourth International Symposium on the Geochemistry of the Earth’s Surface. University of Leeds (Leeds): 628632.Google Scholar
Rang, M.C. & Schouten, C.J., 1989. Evidence for historical heavy metal pollution in floodplain soils: the Meuse. In: Petts, G.E. (ed.): Historical change of large alluvial rivers: Western Europe. Wiley (Chichester): 127142.Google Scholar
Salminen, R. & Tarvainen, T., 1997. The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration 60:9198.Google Scholar
Shotyk, W., Weiss, D., Appleby, P.G., Cheburkin, A.K., Frei, R., Gloor, M., Kramers, J.D., Reese, S. & Van der Knaap, W.O., 1998. History of atmospheric lead deposition since 12,370 14C yr BP from a peat bog, Jura Mountains, Switzerland. Science 281: 16351640.Google Scholar
Swennen, R. & Van der Sluys, J., 1998a. Environmental relevance of sedimentological and geochemical variations of heavy metals in vertical overbank sediment profiles. Special Volume International Association of Sedimentologists ‘Environmental Sedimentology’: 20 pp.Google Scholar
Swennen, R. & van der Sluys, J., 1998b. Zn, Pb, Cu and As distribution patterns in overbank and medium order stream sediment samples: their use in exploration and environmental geochemistry. Journal of Geochemical Exploration 65: 2745.Google Scholar
Swennen, R., Van Keer, I. & De Vos, W., 1994. Heavy metal contamination in overbank sediments of the Geul River (East Belgium): its relation to former Pb-Zn mining activities. Environmental Geology 24: 1221.Google Scholar
Swennen, R., Van der Sluys, J., Hindel, R. & Brusselmans, A., 1997. Geochemical characterisation of overbank sediments: a way to assess background reference data and environmental pollution in highly industrialised areas (such as Belgium and Luxembourg). Zeitblatt für Geologie und Paläontologie 1: 925942.Google Scholar
Tebbens, L.A., Veldkamp, A. & Kroonenberg, S.B., 1998. The impact of climate change on the bulk and clay geochemistry of fluvial residual channel infillings: the Late Weichselian and Early Holocene River Meuse sediments, The Netherlands. Journal of Quaternary Science 13: 345356.3.0.CO;2-B>CrossRefGoogle Scholar
Tebbens, L.A., Veldkamp, A. & Kroonenberg, S.B., 1999. Fluvial incision and channel downcutting as a response to Late Glacial and Early Holocene climate change: the lower reach of the Meuse river (the Netherlands). Journal of Quaternary Science 14: 5975.Google Scholar
Törnqvist, T.E., Weerts, H.J.T. & Berendsen, H.J.A., 1993. Definition of two new members in the upper Kreftenheye and Twente Formations (Quaternary, The Netherlands): a final solution to persistent confusion? Geologie en Mijnbouw 72: 251264.Google Scholar
Van den Berg, M.W. 1996. Fluvial sequences of the Maas, a 10 Ma record of neotectonics and climate change at various time scales, PhD Thesis, Wageningen Agricultural University: 181 pp.Google Scholar
Van den Broek, J.M.M. & Van den Marel, H.W., 1964. The alluvial soils of the Rivers Meuse, Roer en de Geul in the province of Limburg. Mededelingen van de Stichting voor Bodemkartering, Bodemkundige Studies 7: 175.Google Scholar
Van den Broek, J.M.M. & Van den Marel, H.W. 1980. Properties and origin of sediments of the Meuse river in the Netherlands and Belgium. Pedologie 30: 243273.Google Scholar
Van der Marel, H.W. & Van der Broek, J.M.M., 1962. Calcium-magnesium and potassium-magnesium relations in loess soils of Limburg. Boor en Spade 12: 103110.Google Scholar
Van der Sluys, J., Brusselmans, A., De Vos, W. & Swennen, R., 1997. Regional geochemical mapping of overbank and stream sediments in Belgium and Luxembourg, III. Geochemical maps of Belgium and Luxembourg based on overbank and active stream sediments. Belgian Geological Survey Professional Paper 283: 193.Google Scholar
Walraven, N., Beets, C.J., Kasse, C. Bohncke, S.J.P., Van Os, B.J.H. & Huisman, D.J. (in press). Climate induced formation of authigenic minerals in a meander fill of the river Maas. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Westerhoff, W. Broertjes, J.P. & Van den Berg, M.W., 1990. Excursiegids 30e Belgisch-Nederlandse Palynologen Dagen (Arcén 4–5 oktober 1990). Vrije Universiteit (Amsterdam): 54 pp.Google Scholar
Wolterbeek, H.Th., Verburg, T.G. & Van Meerten, Th.G., 1996. On the 1995 flooding of the rivers Meuse, Rhine and Waal in the Netherlands: metal concentrations in deposited river sediments. Geoderma 71: 143156.Google Scholar