Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T13:29:06.245Z Has data issue: false hasContentIssue false

Late Quaternary stratigraphy and morphogenesis in the Danish eastern North Sea and its relation to onshore geology

Published online by Cambridge University Press:  01 April 2016

B. Larsen*
Affiliation:
Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, DK 1350 Copenhagen К, Denmark
L.T. Andersen
Affiliation:
Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, DK 1350 Copenhagen К, Denmark
*
* Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Geological structures and Late Quaternary stratigraphy of the shallow subsurface along the southernmost Danish North Sea coast have been investigated using seismic data and shallow boreholes. A large-scale glaciotectonic thrust complex has been mapped in an area of 15 km by 40 km in the Fanø Bugt area. The affected succession consists of Neogene and Quaternary sediments deformed down to a depth of 200 – 360 m. A kineto-stratigraphic correlation to onshore glaciotectonic deformation suggests that the deformation took place during a westward advance stage of the Late Saalian (Warthe) glaciation. The western limit of the glaciotectonic structures constitutes an N-S striking deformation front situated 35 km off the west coast. Based on the glacial stratigraphy outside the deformation front, it is suggested that the same ice advance that caused the glaciotectonic deformation, eroded the top of the thrust sheets, and subsequently deposited a lower unit of meltwater sediments and an upper heterogenous glacigenic unit. The upper glacigenic unit forms a bank about 30 km offshore. Between the bank and the shore, the surface of the Saalian glacial landscape forms a wide depression ca. 50 m below sea level. This basin has controlled deposition in the area since the late Saalian and is filled with sediments of late Saalian, Eemian, Weichselian and Holocene age. The base of the Holocene marine deposits is thus a flat erosional surface extending eastward several kilometres below the onshore coastal areas and the northern Wadden Sea. This surface was transgressed 8800 years ago. An inverted, in plan view T-shaped, Holocene sand accumulation approximately 25 km long, 30 km wide and 15 – 25 m thick is situated on top of this surface at Blåvands Huk. According to recent estimates by the Danish Coastal Protection Board some 2.5 million m3 sediments are supplied annually to the system from the north. In the last 3000 years, 25 km of the west coast and the associated shoreface slope have prograded ca. 3 km towards the west forming a barrier spit complex. Large aeolian dunes and cover sands now conceal the spit complex. Extending twenty km west of Blåvands Huk is a highly dynamic bank, the Inner Horns Rev, with active sand-accumulation on the slopes. The Inner Horns Rev bank has grown ca. 3.5 km westward during the last 800 years. The deposits seem to be sourced by the coastal longshore sand transport from the north. The Outer Horns Rev was previously assumed to be a Saalian terminal moraine. However, this investigation reveals that it is also mainly a Holocene marine accumulation landform, but sourced from the west. Other sand accumulations, which are situated 20 – 30 km west of the coast, are probably sourced from both the south and the west.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2005

References

Aagaard, T., Nielsen, N. & Nielsen, J., 1995. Skallingen-origin and evolution of a barrier spit. Meddelelser fra Skalling-Laboratoriet XXXV, København 1995: 185.Google Scholar
Andersen, L.T., 2004. The Fanø Bugt Glaciotectonic Thrust Fault Complex, Southeastern Danish North Sea. Ph.D.Thesis 2004. Danmarks og Grönlands Geologiske Undersøgelse Rapport 2004/30: 3568.Google Scholar
Anthony, D. & Heller, I., 2002. The geological architecture and development of the Holmsland Barrier and Ringkøbing Fjord area, Danish North Sea coast. Danish Journal of Geography 102: 2736.Google Scholar
Bartholdy, J. & Pejrup, M., 1994. Holocene evolution of the Danish Wadden Sea. Senckenbergiana maritima 24: 187209.Google Scholar
Berthelsen, A., 1979. The methodology of kineto-stratigraphy as applied to glacial geology. Bulletin of the Geological Society of Denmark 27 Special Issue: 2538.Google Scholar
Brockmann, C., Lange, W., Mittelstaedt, E. & Soetje, K.C., 1981. The tidal stream in the German Bight. Deutsche Hydrographische Zeitschrift 34 (2): 5660 + Plate 1.Google Scholar
Clemmensen, L.B., 1999. Holocene evolution of the Vejers-Skallingen barriere spit, Denmark. Excursion B2. in; Pedersen, G.K. & Clemmensen, L.B. (eds): IAS. Copenhagen 1999, Field Trip Guidebook. 19th Regional European Meeting of Sedimentology Aug. 24–26. Copenhagen: 93102.Google Scholar
Clemmensen, L.B. Andreasen, F., Nielsen, S.T. & Sten, E., 1996. The late Holocene coastal dunefield at Vejers, Denmark: characteristics, sand budget and depositional dynamics. Geomorphology 17: 7998.Google Scholar
Davis, R.A., Bartholdy, J., Pejrup, M. & Nielsen, N., 1997. Stratigraphy of Skallingen - A Holocene barrier in the Danish Wadden Sea. Aarhus Geoscience 7: 919.Google Scholar
DGI, 1982. Horns Rev, Ressourceundersøgelser fase 1–4, Geoteknisk Rapport 2, 2 bind. Ref. 4742–75. Rapport til Fredningsstyrelsen 9. kontor-Havbundsundersøgelser.Google Scholar
Ehlers, J., 1990. Reconstructing the dynamics of the north-west European Pleistocene ice sheets. Quaternary Science Reviews 3: 140.Google Scholar
Foged, N., 1987. The need of Quaternary geological knowledge in geotechnical engineering. Boreas 16: 419424.Google Scholar
Gripp, K., 1944. Entstehung und künftige Entwicklung der Deutschen Bucht. Auf dem Archiev der Deutschen Seewarte und das Marineobservatoriums 63 (2): 142.Google Scholar
Houbolt, J.J.H.C., 1968. Recent sediments in the southern bight of the North Sea. Geologie en Mijnbouw 47: 245–237.Google Scholar
Houmark-Nielsen, M., 2003. The Pleistocene of Denmark: a review of stratigraphy and glaciation history. In: Ehlers, J. & Gibbard, P. (eds): Quaternary Glaciation-extend and chronology. Vol. 1 Europe. Elsevier (Amsterdam): 321336.Google Scholar
Houmark-Nielsen, M. & Kjær, K.H., 2003. Southwest Scandinavia, 40–15 kyr BP: paleogeography and environmental change. Journal of Quaternary Science 18: 769786.Google Scholar
Huuse, M. & Lykke-Andersen, H., 2000. Large-scale glaciotectonic thrust structures in the eastern Danish North Sea. In: Maltman, A., Hambrey, M. & Hubbard, B. (eds): Deformation of Glacial Materials. Geological Society, London, Special Publications 176: 293305.Google Scholar
Jarke, J., 1956. Der Boden der südlichen Nordsee. I Eine neue Bodenkarte der südlichen Nordsee. Deutschen Hydrographischen Zeitschrift 9:1-9 and map.Google Scholar
Jessen, A., 1922. Geologisk kort over Danmark, Kortbladet Varde. Danmarks geologiske Undersøgelse 1. række Nr. 14: 195.Google Scholar
Jessen, A., 1925. Geologisk kort over Danmark, Kortbladet Blåvandshuk. Danmarks geologiske Undersøgelse 1. række Nr. 16: 168.Google Scholar
Knudsen, K.L. & Penney, D.N., 1987. Foraminifera and Ostracoda in Late Elsterian-Holsteinian deposits at Tornskov and adjacent areas in Jutland, Denmark. Danmarks geologiske Undersøgelse Ser. B Nr. 10: 167.Google Scholar
Konradi, P., 2000. Biostratigraphy and environment of the Holocene marine transgression in the Heligoland Channel, North Sea. Bulletin of the Geological Society of Denmark 47: 7179.Google Scholar
Konradi, P., Larsen, B. & Sørensen, Aa.B., 2005. Marine Eemian in the Danish eastern North Sea. Quaternary International 133-134: 2131.Google Scholar
Krog, H., 1979. Late Pleistocene and Holocene shorelines in Western Denmark. In: Oele, E., Schüttenhelm, R.T.E. & Wiggers, J.D. (eds): The Quaternary History of the North Sea. Acta Universitatis Upsaliensis Annum Quengentesimum Celebrantis 2. (Uppsala): 7583.Google Scholar
Kuijpers, A., 1993. Supplerende Seismiske undersøgelser i område 524 Horns Rev. DGU Kunde rapport nr. 76. 1993: 118.Google Scholar
Kuijpers, A., 1995. The Late Quaternary sediment distribution in the DK sector of the North Sea: Area 582 and 524. DGU Datadocumentation no 13. 1995: 113.Google Scholar
Kystdirektoratet, , 2001. Kystdirektoratets program for Undersøgelser and Udvikling, 1998 – 2001, Slutrapport. Kystdirektoratets kysttekniske afdeling 2, edition Dec. 2001. Lemvig. 36 pp.Google Scholar
Kystinspektoratet, , 1998. Menneske, Hav, Kyst og Sand. Thyme, F. (ed.) Kystinspektoratet 1973–1998. Lemvig. 95 pp.Google Scholar
Larsen, B. & Leth, J.O., 2001a: Geologisk kortlaegning af Vestkysten. En vurdering af aflejringsforholdene i området mellem Nymindegab og Horns Rev. GEUS Rapport 2001/92, Vol. 1 Text, 1–44 and vol. 2 Data. Geological Survey of Denmark and Greenland.Google Scholar
Larsen, B. & Leth, J.O., 2001b. Geologisk kortlægning af Vestkysten. Regionalgeologisk tolkning og en samlet vurdering af aflejringsforholdene i området mellem Nymindegab og Horns Rev. GEUS Rapport 2001/96, Vol. 1 Text: 183 and vol. 2. Data. Geological Survey of Denmark and Greenland.Google Scholar
Larsen, BG., 2003. Blåvands Huk-Horns Rev området - et nyt Skagen? Geologi. Nyt fra GEUS Nr. 4 December 2003: 111.Google Scholar
Lauersen, G.V., 1995. Foraminiferal biostratigraphy of Cenozoic sections in five wells from the Danish area. EFP project-92: Basin development of the Tertiary of the Central Trough with emphasis on possible hydrocarbon reservoirs. Report nr. 20 University of Aarhus / Geological survey of Denmark.Google Scholar
Leth, J.O., 1996. Late Quaternary geological development of the Jutland Bank and the initiation of the Jutland Current, NE North Sea. NGU. Bulletin, 430: 2534.Google Scholar
Leth, J.O., Larsen, B. & Anthony, D., 2004. Sediment distribution and transport in shallow coastal waters along the Danish west coast. Geological Survey of Denmark and Greenland Bulletin 4: 4144.Google Scholar
Lüneburg, H., 1967. Eigenschaften und Verteilung der Sedimente am Homsriff. Veröffentlichungen des Institut für Meeresforschung in Bremerhaven 10: 187208.Google Scholar
Miller, G.H. & Mangerud, J., 1996. Aminostratigraphy of European Marine Interglacial Deposits. Quaternary Science Reviews 4: 215278.Google Scholar
Mitchum, R.M., Vail, P.R. & Sangree, J.B., 1977. Seismic stratigraphy and global changes of sea level, Part 6. Stratigraphie interpretation of seismic reflection patterns in depositional seguences. In: Payton, C.E. (ed.): Seismic Stratigraphy-application to hydrocarbon exploration. American Association of Petroleum Geologists Memoir 26: 117133.Google Scholar
Nielsen, L.H. & Johannessen, P.N., 2001. Accretionary, forced regressive shore-face sands of the Holocene-Recent Skagen Odde spit complex, Denmark - a possible outcrop analogue to fault-attached shoreface sandstone reservoirs. In: Martinsen, O.J. & Dreyer, T. (eds): Sedimentary Environments Offshore Norway-Palaeozoic to Recent. NPF Special Publication 10. Elsevier Science B.V. Amsterdam: 457472.Google Scholar
Nielsen, S.T., Clemmensen, L.B. & Andreasen, F., 1995. The middle and late Holocene barrier spit system at Vejers, Denmark: structure and development. Bulletin of the Geological Society of Denmark 42: 105119.Google Scholar
Noe-Nygaard, A., 1992. Larvikiter i kvaderstenskirker, Et argument for en ‘gammel norsk isstrøm’ i tidlig Weichsel. DGU. Miljøministeriet. Copenhagen: 132.Google Scholar
Petersen, K.S., 1998. Den holocene marine udvikling ved Limfjordstangerne og tilgrænsende dele af Nordsøen-Jyske Rev, belyst ved molluskfaunaen. Limfjordsprojektet, rapport nr. 8, 1998: 303323.Google Scholar
Pratje, O., 1951. Die Deutung der Steingründe in der Nordsee als Endmoränen. Deutsche Hydrograpische Zeitschrift 4 (3): 106114 + Tafel 7.Google Scholar
Rasmussen, E.S., 2003. Sedimentologiske og stratigrafiske undersøgelser af de miocæne aflejringssystemer i Jylland. Geologisk Tidskrift (2): 34.Google Scholar
Reinhard, H., 1974. Genese des Nordseeraumes im Quartär. Societas Geographica Fenniae, Helsingfors, Fennia 129: 195.Google Scholar
Schipull, K., 1990. Blåvandshuk und Skagen Odde-zur Grundrissentwicklung zweier markanter Küstenvorsprünge der Halbinsel Jutland, Dänemark. Mitteilungen Geographische Gesellschaft in Hamburg 80: 557571.Google Scholar
Sjørring, S., 1983. The glacial history of Denmark. In: Ehlers, J., (ed.): Glacial deposits in north-west Europe. A. A. Balkema (Rotterdam): 163179.Google Scholar
Skibsted, S., 1992. På sporet af gammel kulde og varme. Varv : 7389.Google Scholar
Stewart, F.S. & Stoker, M.S., 1990. Problems associated with seismic facies analysis of diamicton-dominated, shelf glacigenic sequences. Geo-Marin Letters 10: 151156.Google Scholar
Streif, H., 2004. Sedimentary record of Pleistocene and Holocene marine inudations along the North Sea coast of Lower Saxony, Germany. Quaternary International 112: 328.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hugghen, K.A., Kromer, B., Maccormac, G., Van der Plicht, J. & Spurk, M., 1998. INTCAL98 Radiocarbon Age Calibration, 24.000-0 cal BP. Radiocarbon 40: 10411083.Google Scholar