Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T15:11:38.711Z Has data issue: false hasContentIssue false

The Holocene evolution of the barrier and the back-barrier basins of Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply

Published online by Cambridge University Press:  01 April 2016

Dirk J. Beets*
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
Adam J. F. van der Spek
Affiliation:
Netherlands Institute of Applied Geoscience TNO - National Geological Survey, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
*
2Corresponding author; e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Flooding of the southern part of the North Sea occurred between 9000 and 8000 BP, when the rate of relative sea-level rise was on the order of 0.7 cm per year for the Dover Strait Region and 1.6 cm per year for the area north of the Frisian Islands, forcing the shoreline to recede rapidly. When relative sea-level rise decelerated after 7000 BP for the Belgian coast and 6000 BP for the central Netherlands coast, sediment supply by the tidal currents balanced the creation of accommodation space in the estuaries and other back-barrier basins. Consequently, the barrier started to stabilize, and the tidal basins and their inlets silted up. Between 5500 and 4500 BP, the Belgian coastal plain changed into a freshwater marsh with peat accumulation, and the same happened 500–1000 years later in the western provinces of the Netherlands. The E-W running barrier/back-barrier system of the Frisian Islands in the northern Netherlands stayed open until today, however, because of lower sediment supply.

The period between 4000 and 2000 BP was relatively quiet due to the strong deceleration of the rate of sea-level rise; peat cushions developed behind the barriers, which were straightened by erosion of the headlands. Major and often catastrophic flooding occurred in the Middle Ages, when the estuaries in the southwestern part of the Netherlands formed.

About 226 (± 15%) × 109 m3 sediment, mostly sand, is stored in the barriers and back-barrier basins of the Netherlands, 70% of which was deposited prior to 5000 BP. About 10% of the stored sediment is estimated to be of alluvial origin. Most of the sediment is derived by the erosion of the Pleistocene basement during recession of the barriers, but tide-induced crossshore transport from the North Sea forms an additional source for the barriers and back-barriers of the west-facing coast of the Netherlands.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Austin, R.M., 199. Modelling Holocene tides on the NW European continental shelf. Terra Nova 3: 276288.CrossRefGoogle Scholar
Baeteman, C., 1985. Development and evolution of sedimentary environments during the Holocene in the western coastal plain of Belgium - Eiszeitalter und Gegenwart 35:2332.Google Scholar
Baeteman, C., Beets, D.J. & Van Strydonck, M., 1999. Tidal crevasse splays as the cause of rapid changes in the rate of aggradation in the Holocene tidal deposits of the Belgian coastal plain. Quaternary International 56: 313.Google Scholar
Beets, D.J., Van der Valk, L. & Stive, M.J.F., 1992. Holocene evolution of the coast of Holland. Marine Geology 103: 423443.Google Scholar
Beets, D.J., Roep, Th.B. & Westerhoff, W.E., 1996. The Bergen inlet: closing history and related barrier progradation. Mededelingen Rijks Geologische Dienst 57: 97133.Google Scholar
Behre, K.-E., Menke, B. & Streif, H., 1979. The Quaternary geological development of the German part of the North Sea. In: Oele, E., Schüttenhelm, R.T.E.. & Wiggers, A.J. (eds.): The Quaternary history of the North Sea. Acta Universitatis Upsaliensis, Symposia Universitatis Upsaliensis Annum Quingentesimum Celebrantis (Uppsala) 2: 85115.Google Scholar
Berné, S., Trentesaux, A., Stolk, A., Missiaen, T. & De Batist, M., 1994. Architecture and long term evolution of a tidal sandbank: the Middelkerke Bank (southern North Sea). Marine Geology 121: 5772.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., De-Menocai, P., Priori, P., Cullen, H. Hajdas, I. & Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial Climates. Science 278: 12571266.Google Scholar
Collins, M.B., Shimwell, S.J., Gao, S., Powell, H., Hewitson, C. & Taylor, J.A., 1995. Water and sediment movement in the vicinity of linear sandbanks: the Norfolk Banks, southern North Sea. Marine Geology 123: 125142.Google Scholar
De Gans, W. & Van Gijssel, K., 1996. The late Weichselian morphology of the Netherlands and its influence on the Holocene coastal development. Mededelingen Rijks Geologische Dienst 57: 1125.Google Scholar
De Groot, Th.A.M. & De Gans, W., 1996. Facies variations and sea-level-rise response in the lowermost Rhine/Meuse area during the last 15 000 years (the Netherlands). Mededelingen Rijks Geologische Dienst 57: 229250.Google Scholar
Denys, L. & Baeteman, C., 1995. Holocene evolution of relative sea-level and local mean high water spring tides in Belgium: a first assessment. Marine Geology 124: 119.Google Scholar
Dronkers, J., 1986. Tidal asymmetry and estuarine morphology. Netherlands Journal of Sea Research 20: 117131.Google Scholar
Eisma, D., 1968. Composition, origin and distribution of Dutch coastal sands between Hoek van Holland and the Island of Vlieland. Netherlands Journal of Sea Research 4: 123267.Google Scholar
Flemming, B.W. & jr.Davis, R.A., 1994. Holocene evolution, morphodynamics and sedimentology of the Spiekeroog barrier island system (southern North Sea.- Senckenbergiana Maritima 24: 117155.Google Scholar
Gerritsen, H. & Berentsen, C.W.J., 1998. A modelling study of tidally induced equilibrium sand balances in the North Sea during the Holocene. Continental Shelf Research 18: 151200.CrossRefGoogle Scholar
Houbolt, J.J.H.C., 1968. Recent sediments in the Southern Bight of the North Sea. Geologie en Mijnbouw 47: 245273.Google Scholar
Houthuys, R., De Moor, G. & Sommé, J., 1993. The shaping of the French-Belgian North Sea coast throughout recent geology and history. In: Magoon, O.T. et al. (eds.): Coastlines of the southern North Sea. American Society of Civil Engineers: 2741.Google Scholar
Jelgersma, S., 1961. Holocene sea level changes in the Netherlands. Mededelingen Geologische Stichting C VI 7: 1100.Google Scholar
Jelgersma, S., 1979. Sea level changes in the North Sea Basin. In: Oele, E., Schüttenhelm, R.T.E. & Wiggers, A.J. (eds.):The Quaternary history of the North Sea. Acta Universitatis Upsaliensis, Symposia Universitatis Upsaliensis Annum Quingentesimum Celebrantis (Uppsala) 2: 233248.Google Scholar
Jelgersma, S., De Jong, J., Zagwijn, W.H. & Van Regteren Altena, J.F., 1970. The coastal dunes of the western Netherlands: geology, vegetational history and archeology. Mededelingen Rijks Geologische Dienst 21: 93167.Google Scholar
Johnson, M.A., Kenyon, N.H., Belderson, R.H. & Stride, A.H., 1982. Sand transport. In: Stride, A.H. (ed.): Offshore tidal sands: processes and deposits. Chapman & Hall (London): 5894.Google Scholar
Joos, M. 1982 Swiss Midland-lakes and climatic changes. In: Harding, A.F. (ed.): Climatic change in later prehistory. Edinburgh University Press: 4452.Google Scholar
Kenyon, N.H., Belderson, R.H. Stride, A.H. & Johnson, M.A., 1981. Offshore tidal sand-banks as indicators of net sand transport as potential deposits. International Association of Sedimentologists Special Publication 5: 257268.Google Scholar
Kroon, A., 1990. Three dimensional morphological changes of a nearshore bar system along the Dutch coast near Egmond aan Zee. In: Proceedings of the Skagen Symposium. Journal of Coastal Research, Special Issue 9: 430451.Google Scholar
Lamb, H.H., 1982. Reconstruction of the course of postglacial climate over the world. In: Harding, A.F. (ed.): Climatic change in later prehistory. Edinburgh University Press: 1133.Google Scholar
Ludwig, G., Müller, H. & Streif, H., 1979. Neuere Daten zum holozänen Meeresspiegelanstieg im Bereich der Deutschen Bucht. Geologisches Jahrbuch 32D: 322.Google Scholar
Ludwig, G., Müller, H. & Streif, H., 1981. New dates on Holocene sea-level changes in the German Bight. International Association of Sedimentologists Special Publication 5: 211219.Google Scholar
Makaske, B., 1998 Anastomosing rivers. Ph.D. thesis University of Utrecht: 285 pp.Google Scholar
McCave, I.N., 1971. Sand waves in the North Sea off the coast of Holland. Marine Geology 10: 199225.Google Scholar
Oost, A.P., 1995. Sedimentological implications of morphodynamic changes in the ebb-tidal delta, the inlet, and the drainage basin of the Zoutkamperlaag tidal inlet (Dutch Wadden Sea), induced by a sudden decrease in tidal prism. International Association of Sedimentologists Special Publication 24: 101119.Google Scholar
Oost, A.P. & De Boer, P.L., 1994. Sedimentology and development of barrier islands, ebb-tidal deltas, inlets and backbarrier areas of the Dutch Wadden Sea - Senckenbergiana Maritima 24: 65115.Google Scholar
Pons, L.J., Jelgersma, S., Wiggers, A.J. & De Jong, J.D., 1963. Evolution of The Netherlands coastal area during the Holocene. Verhandelingen Koninklijk Nederlands Geologisch Mijnbouwkundig Genootsschap 21(2): 197208.Google Scholar
Roep, Th.B. & Van Regteren Altena, J.A., 1988. Palaeotidal levels in tidal sediments (3800-3635 BP); compaction, sea-level rise and human occupation (3275-2620 BP) at Bovenkarspel, NW Netherlands. In: De Boer, P.L. et al.(eds.):Tide-influenced sedimentary environments and facies. Reidel Publishing Company (Dordrecht): 215231.CrossRefGoogle Scholar
Sha, L.P., 1989 Cyclic morphological changes of the ebb-tidal delta, Texel Inlet, The Netherlands. Geologie en Mijnbouw 68: 3548.Google Scholar
Streif, H., 1988. Barrier islands, tidal flats, and coastal marshes resulting from a relative rise of sea level in East Frisia on the German North Sea coast. In: Van der Linden, W.J.M. et al. (eds.): Coastal lowlands, Proceedings of a Symposium of the Royal Geological andMining Society of the Netherlands (KNGMG). Kluwer (Dordrecht): 213225.Google Scholar
Streif, H., 1990. Das ostfriesische Küstengebiet. Sleswig Geologische Führer 57 (Borntraeger, Berlin): 376 pp.Google Scholar
Stuiver, M. & Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. In: Stuiver, M., Long, A. & Kra, R.S. (eds.): Calibration 1993. Radiocarbon 35: 215230.Google Scholar
Ten Brinke, W.B.M., 1998. The importance of large-magnitude floods for long-term sediment transport and morphodynamics in the Dutch Rhine river system. In: Kroon, A. & Ruessink, B.G. (eds.): Geographical developments in coastal morphodynamics - a tribute to Joost Terwindt. Faculteit Ruimtelijke Wetenschappen, University of Utrecht: 5983.Google Scholar
Terwindt, J.H.J., 1977. Mud in the Dutch delta area. Geologie en Mijnbouw 56: 203210.Google Scholar
Törnqvist, T.E., 1993. Holocene alternation of meandering and anastomosing fluvial systems in the Rhine-Meuse delta (Central-Netherlands) controlled by sea-level rise and subsoil erodibility. Journal of Sedimentary Petrology 63: 683693.Google Scholar
Törnqvist, T.E., Van Ree, M.H.M. & Faessen, E.H.J.L., 1993. Longitudinal facies architectural changes of a Middle Holocene anastomosing distributary system (Rhine-Meuse delta, central Netherlands). Sedimentary Geology 85: 203219.Google Scholar
Van de Plassche, O., 1982. Sea-level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36: 193.Google Scholar
Van de Plassche, O. & Roep, Th.B., 1989. Sea-level changes in the Netherlands during the last 6500 years: basal peat vs. coastal barrier data. In: Scott, D.B., Pirazolli, P.A. & Honig, C.A. (eds.): Late Quaternary sea-level correlation and applications. NATO ASI Series, C256 (Kluwer, Dordrecht): 4156.Google Scholar
Van der Spek, A.J.F., 1995. Holocene sediment influxes in the coastal zone of the Netherlands and the North Sea as a function of sea-level rise and wave- and tide-induced sand transport. Internal Report Geological Survey of the Netherlands (Haarlem) 90.017: 10 pp.Google Scholar
Van der Spek, A.J.F., 1996. Holocene depositional sequences in the Dutch Wadden Sea south of the island of Ameland. Mededelingen Rijks Geologische Dienst 57: 4169.Google Scholar
Van der Spek, A.J.F. & Beets, D.J., 1992. Mid-Holocene evolution of a tidal basin in the western Netherlands: a model for future changes in the northern Netherlands under conditions of accelerated sea-level rise? Sedimentary Geology 80: 185197.Google Scholar
Van der Valk, L., 1996a. Geology and sedimentology of Late Atlantic, wave-dominated deposits near The Hague (South-Holland, the Netherlands): a reconstruction of an early prograding coastal sequence. Mededelingen Rijks Geologische Dienst 57: 201228 Google Scholar
Van der Valk, L., 1996b. Coastal barrier deposits in the central Dutch coastal plain. Mededelingen Rijks Geologisch Dienst 57: 133201.Google Scholar
Van Geel, B., Buurman, J. & Waterbolk, H.T., 1996. Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11: 451460.3.0.CO;2-9>CrossRefGoogle Scholar
Van Rijn, L.C., 1995. Sand budget and coastline changes of the central coast of Holland between Den Helder and Hoek of Holland, period 1964–20450. Delft Hydraulics Report H2129: 126 pp.Google Scholar
Van Straaten, L.M.J.U, 1961. Directional effects of winds, waves and currents along the Dutch North Sea coast. Geologie en Mijnbouw 40: 333346 + 363–391.Google Scholar
Van Straaten, L.M.J.U., 1965. Coastal barrier deposits in South and North Holland - in particular in the area around Scheveningen and IJmuiden. Mededelingen Geologische Stichting, Nieuwe Serie 17:4175.Google Scholar
Vos, P.C. & Van Heeringen, R.M., 1997. Holocene geology and occupation history of the Province of Zeeland. Mededelingen Rijks Geologische Dienst 59: 5109.Google Scholar
Weerts, H.J.T & Berendsen, H.J.A., 1995. Late Weichselian and Holocene fluvial palaeogeography of the southern Rhine-Meuse delta,The Netherlands. Geologie en Mijnbouw 74:199212.Google Scholar
Zagwijn, W.H., 1986. Nederland in het Holoceen. Rijks Geologische Dienst (Haarlem): 46 pp.Google Scholar