Published online by Cambridge University Press: 24 March 2014
The impact of oil and, in particular, gas fields discovered in the Dutch subsurface has been very significant. However, 50 years after the discovery of the giant Groningen gas field the Netherlands has become very mature for exploration of oil and gas, and the gas volume left to be discovered in conventional traps is insignificant compared to what has been found already. The total portfolio of conventional prospects held by the industry contains several 100s of billions of cubic metres (bcm), as reported by the Ministry of Economic Affairs, but many of these prospects are unattractive to drill because of their small size or other geologically unfavourable aspects. Hence, for planning purposes of future national gas production the risk should be taken into account that the size of the conventional portfolio is overestimated. The major E&P companies have reduced their exploration efforts and the number of wells drilled as well as the size and total volume of discovered gas reserves has seen a steady decline over the last 10 years. Some surprises may still be in store and can occasionally add a welcome addition of gas. But the follow-up potential of new play and trapping concepts has been disappointing for many years now, and it is concluded that this is unlikely to be different in the future. Remaining conventional discoveries will mainly be in small near-field targets that as a result of technological advances made in the last few decades can be drilled with high confidence, despite their small volumes.
This leaves the so-called unconventional gas (UG) resources for a real and significant increase in the exploration potential of the Netherlands. UG resources occur outside conventional structural or stratigraphic traps in tight (low permeability) rocks and are of regional or sub-regional extent, without well-defined hydrocarbon-water contacts. The potential for Basin Centred Gas, Shale Gas and Coal Bed Methane is reviewed. As, according to present-day technology, development of UG requires very dense drilling at low costs with well spacing of a few 100s of metres, only the onshore potential can be commercial, even in the longer term.
Recent geological uplift is a characteristic for all North American commercial UG developments. Uplift helps bringing the resources close to the surface and facilitates development of fractures, which are essential for achieving commercial flow rates. This significantly reduces the area where commercial UG resources may occur in the Netherlands. In addition, sweet spots, where commercial flow rates and ultimate recovery per well can be achieved, represent only a fraction of the total ‘play area’. The UG plays in the Dutch subsurface remain to be proven, and there is still a significant technical risk associated with these plays, on top of the commercial risk. Therefore, despite potentially enormous in-place gas volumes in these unconventional plays, recoverable volumes are much less. If UG resources can be proven and are commercially developable, their cumulative volume potential is estimated by us in the order of a few tens to one or two hundreds bcm of recoverable gas at best. Finally, as UG resources produce at very low rates and require large numbers of wells to develop, the environmental impact in a densely populated country like the Netherlands is enormous, and needs to be seriously considered, already in the exploration phase.
In a mature area like the Netherlands, industry focus should be on technology development to reduce risk, increase recovery, reduce cost and minimize surface impact. Cooperation between Operators to build multi-well campaigns is therefore strongly recommended to reduce mobilisation cost. In addition, government incentives should be targeted at the development phase, in order to increase economic attractiveness for difficult reservoirs, both conventional and unconventional. In this way State and industry will both be able to maximize their returns on the remaining potential for gas and oil in the next two to three decades.