Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T17:43:03.690Z Has data issue: false hasContentIssue false

Geomorphologic context and proposed chronostratigraphic position of Lower Palaeolithic artefacts from the Op de Schans pit near Kesselt (Belgium) to the west of Maastricht

Published online by Cambridge University Press:  24 March 2014

E.P.M. Meijs*
Affiliation:
ArcheoGeolab, Veulenerbank 33, NL-6213 JR Maastricht, the Netherlands
Ph. van Peer
Affiliation:
Prehistoric Archaeology Unit, Katholieke Universiteit Leuven, PO Box 2409, BE-3001 Heverlee, Belgium
J.P.L.M.N. de Warrimont
Affiliation:
Archeologische Vereniging Limburg, Pastoor Stassenstraat 9, NL-6243 BW Geulle, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In July 2007 an important archaeological find was made in the Op de Schans loess pit near Kesselt (Belgian Limburg) immediately to the west of the Dutch city of Maastricht. During an archaeological rescue dig, three Lower Palaeolithic artefacts were recovered from the infill of an ancient erosion gully: a bifacial side-scraper, an atypical biface and a cortical flake. Typologically, the artefacts can be classified as Acheulean. In this region, harbouring several such brickyard pits, these are the oldest artefacts yet found, prompting further investigations into the stratigraphic position of the archaeological layer. The Op de Schans pit, which has yielded several Middle Palaeolithic occupation horizons, is located in the middle of an ancient sediment trap. Because of this exceptional geomorphologic situation, multiple ancient sediments have been preserved which elsewhere were entirely removed during subsequent erosion phases. Here five separate loess beds with intercalated interglacial palaeosols are present, overlying the deposits of the River Maas (Meuse). This sequence has been used as a hypothetical framework for elaborating a chronostratigraphic model. The archaeological level in question, discovered at the base of a subsequently infilled erosion gully, can most likely be chronostratigraphically dated to around the start of Marine Isotope Stage 10 (MIS 10), in the era of the Pottenberg discordance (approx. 390 ka). However, the possibility cannot be excluded that the gully in which the artefacts were found dates from an early phase of MIS 12 (approx. 480 ka). The age may in fact be greater still, as the artefacts have been eroded out of their original, primary context and subsequently deposited in the gully. Hypothetically, they may even have been taken up from the Maas loam of the Kesselt Maas terrace (MIS 13) that here is situated directly below the archaeological horizon. This would make the maximum age of the artefacts recovered from the gully around 500 ka.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2013

References

Antoine, P., Lautridou, J.-P., Sommé, J., Auguste, P., Auffret, J.-P., Baize, S., Clet-Pellerin, M., Coutard, J.-P., Dewolf, Y., Dugué, O., Joly, F., Laignel, B., Laurent, M., Lavollé, M., Lebret, P., Lécolle, F., Lefebvre, D., Limondin-Lozouet, N., Munaut, A.-V., Ozouf, J.-C., Quesnel, F. & Rousseau, D.-D., 1998. Les formations quaternaires de la France du Nord-Ouest: limites et corrélations. Quaternaire 9: 227241.CrossRefGoogle Scholar
Antoine, P., 2002. Les loess en France et dans le Nord-Ouest européen. Revue française de Géotechnique 99: 321.CrossRefGoogle Scholar
Antoine, P., Auguste, P., Bahain, J.-J., Coudret, P., Depaepe, P., Fagnart, J.-P., Falguères, C., Fontugne, M., Frechen, M., Hatté, C., Lamotte, A., Laurent, M., Limondin-Lozouet, N., Locht, J.-L., Mercier, N., Moigne, A.-M., Munaut, A.-V., Ponel, P. & Rousseau, D.-D., 2003. Paléoenvironnements pléistocènes et peuplements paléolithiques dans le bassin de la Somme (nord de la France). Bulletin de la Société préhistorique française 100: 528.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H. & Zöller, L., 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28: 119.CrossRefGoogle Scholar
Antoine, P., Auguste, P., Bahain, J.-J., Chaussé, C., Falguères, Ch., Ghaleb, B., Limondin-Lozouet, N., Locht, J.-L. & Voinchet, P., 2010. Chronostratigraphy and Palaeoenvironments of Acheulean occupations in Northern France (Somme, Seine and Yonne valleys). Quaternary International 223–224: 456461.CrossRefGoogle Scholar
Bahain, J.-J., Falguères, C., Laurent, M., Voinchet, P., Dolo, J.-M., Antoine, P. & Tuffreau, A., 2007. ESR chronology of the Somme river terrace system and first human settlements in northern France. Quaternary Geochronology 2: 356362.CrossRefGoogle Scholar
Bassinot, F. C., Labeyrie, L. D., Vincent, E., Quidelleur, X., Shackleton, N. J. & Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters 126: 91108.CrossRefGoogle Scholar
Bibus, E., 1980. Zur Relief-, Boden- und Sedimententwicklung am unteren Mittelrhein. Frankfurter Geowissenschaftliche Arbeiten D1, Frankfurt am Main: 295 pp.Google Scholar
Bringmans, P.M.M.A., 2006. Multiple Middle Palaeolithic occupations in a Loesssoil sequence at Veldwezelt-Hezerwater, Limburg, Belgium. Katholieke Universiteit Leuven, unpublished PhD thesis.Google Scholar
Cheng, H., Lawrence Edwards, R., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R. & Wang, X., 2009. Ice age terminations. Science 326: 248252.CrossRefGoogle ScholarPubMed
Cofflet, L. & Schirmer, W., 2002. Paleomagnetic investigations in Erkelenz and Rheindahlen. In: Loess units and soil complexes in the Niederrhein and Maas area. Terra Nostra 1: 5156.Google Scholar
Cordier, S., Harmand, D., Frechen, M. & Beiner, M., 2006. Fluvial system response to Middle and Upper Pleistocene climate change in the Meurthe and Moselle valleys (Eastern Paris Basin and Rhenish Massif). Quaternary Science Reviews 25: 14601474.CrossRefGoogle Scholar
Cordy, J.-M. & Udrescu, M., 1999. Etude préliminaire des restes paléontologiques découverts en 1999 à la carriere Nelissen à Kesselt. Université de Liege, Département de l'Évolution des Vertébrés et Évolution humaine (Liège), 2 pp.Google Scholar
Demek, J. & Kukla, J., 1969. Periglazialzone, Löss und Paläolithicum der Tschechoslowakei. Tschechoslowakische Akademie der Wissenschaften, Geografisches Institut (Brno): 1158.Google Scholar
De Warrimont, J.P.L.M.N., 2007. Prospecting Middle Palaeolithic open-air sites in the Dutch-Belgian border area near Maastricht. PalArch's Journal of Archaeology of Northwest Europe 1, 3: 4089.Google Scholar
Felder, W.M. & Bosch, P.W., 1988. Geologische kaart van Zuid-Limburg en omgeving, Oppervlaktekaart. Geologische Dienst Heerlen. Rijks Geologische Dienst Heerlen.Google Scholar
Felder, W.M. & Bosch, P.W., 1989. Geologische kaart van Zuid-Limburg en omgeving, Afzettingen van de Maas. Rijks Geologische Dienst Heerlen.Google Scholar
Frechen, M., Van Vliet-Lanoë, B. & Van den Haute, P., 2001. The Upper Pleistocene loess record at Harmignies/Belgium – high resolution terrestrial archive of climate forcing. Palaeogeography, Palaeoclimatology, Palaeoecology 173: 175195.CrossRefGoogle Scholar
Geolab, , 1996. Boringen ten behoeve van ontginningszone Kesselt voor Gewestplan Limburgs Maasland, gemeente Lanaken, kaartblad 34/2, Geolab b. v.b.a. Boringen-Bodemonderzoek, Plaanstraat 1, 9810 Eke-Nazareth, Belgium.Google Scholar
Haesaerts, P. & Van Vliet-Lanoë, B., 1973. Évolution d'un permafrost fossile dans les limons du Dernier Glaciaire à Harmignies (Belgique). Bulletin de l'Association française pour l'Étude du Quaternaire 35: 151164.CrossRefGoogle Scholar
Haesaerts, P. & Van Vliet-Lanoë, B., 1981. Phénomènes périglaciaires et sols fossiles observés à Maisières-Canal, à Harmignies et à Rocourt. Biuletyn Peryglacjalny 28: 291324.Google Scholar
Haesaerts, P. & Mestdagh, H., 2000. Pedosedimentary evolution of the last interglacial and early glacial sequence in the European loess belt from Belgium to central Russia. Geologie en Mijnbouw 79: 313324.CrossRefGoogle Scholar
Halet, F., 1932. La Géologie du flanc occidental de la vallée de la Meuse à l'Ouest de l'enclave de Maastricht d'après les sondages d'étude du Canal Albert. Bulletin de la Société belge de Géologie 42: 195225.Google Scholar
Hosfield, R., 2011. The British Lower Palaeolithic of the early Middle Pleistocene. Quaternary Science Reviews 30: 14861510.CrossRefGoogle Scholar
Huijzer, A.S., 1993. Cryogenic microfabrics and macrostructures: interrelations, processes and paleoenvironmental significance. Thesis Vrije Universiteit Amsterdam: 245 pp.Google Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E. & White, J., 2001. Oxygen isotope and paleotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16: 299307.CrossRefGoogle Scholar
Juvigné, E., Haesaerts, P., Mestdagh, H., Pissart, A. & Balescu, S., 1996. Révision du stratotype loessique de Kesselt (Limbourg, Belgique). Comptes rendus de l'Académie de Sciences de Paris 323: 801807.Google Scholar
Krook, L., 1993. Heavy minerals in the Belvédère deposits. In: Vandenberghe, J., Roebroeks, W. & Van Kolfschoten, T. (eds): Maastricht-Belvédère: stratigraphy, palaeoenvironment and archaeology of the Middle and Late Pleistocene deposits Part II. Mededelingen Rijks Geologische Dienst 47: 2530.Google Scholar
Kuijper, W.J., 2003. Internal report Saalian molluscs in Veldwezelt pit. Leiden: 12.Google Scholar
Kukla, G.J., 1975. Loess stratigraphy of Central Europe. In: Butzer, K. W. & Isaac, G.L. (eds): After the Australopithecines: stratigraphy, ecology, and culture change in the Middle Pleistocene. Mouton (The Hague/Paris): pp. 99188.CrossRefGoogle Scholar
Lambert, F., Delmonte, B., Petit, J.R., Bigler, M., Kaufmann, P.R., Hutterli, M.A., Stocker, T.F., Ruth, U., Steffensen, J.P. & Maggi, V., 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452: 616619.CrossRefGoogle Scholar
Lauwers, R. & Meijs, E.P.M., 1985. Ein Mittelpaläolithischer Fundplatz in Kesselt (Prov. Limburg, Belgien), Erste Ergebnisse. Archäologisches Korrespondenzblatt 15, Heft 2: 123129.Google Scholar
Losson, B. & Quinif, Y., 2001. The Moselle piracy, new chronological data from U/Th dating of speleothems. Karstologia 37: 2940.CrossRefGoogle Scholar
Markovic, S.B., Hambach, U., Catto, N., Jovanovic, M., Buggle, B., Machalett, B., Zöller, L., Glaser, B. & Frechen, M., 2009. Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quaternary International 198: 255266.CrossRefGoogle Scholar
Mees, R.P.R, 1984. Paleobodems in de löss in West- en Midden-Europa. Doctoral thesis, Instituut voor Bodemkunde, Rijksuniversiteit Utrecht: 72 pp.Google Scholar
Mees, R.P.R & Meijs, E.P.M, 1984. Note on the presence of pre-Weichselian loess deposits along the Albert Canal near Kesselt and Vroenhoven (Belgian Limbourg). Geologie en Mijnbouw 63: 711.Google Scholar
Meijer, T. & Preece, R.C., 2000. A review of the occurrence of Corbicula in the Pleistocene of North-West Europe. Geologie en Mijnbouw / Netherlands Journal of Geosciences, 79 (2/3): 241255.CrossRefGoogle Scholar
Meijs, E.P.M, 2002. Loess stratigraphy in Dutch and Belgian Limburg. Eiszeitalter und Gegenwart 51: 114130.Google Scholar
Meijs, E.P.M, 2006. Paleolithic and Quaternary research in the European loess belt (www.archeogeolab.nl).Google Scholar
Meijs, E.P.M, 2011. The Veldwezelt site (province of Limburg, Belgium), environmental and stratigraphical interpretations. In: Jagt, J.W.M, Jagt-Yazykova, E.A. & Schins, W.J.H (eds): A tribute to the late Felder brothers – pioneers of Limburg geology and archaeology. Netherlands Journal of Geosciences 90 (2-3): 7394.Google Scholar
Moine, O., 2010. Report on the malacofaunas of Saalian loess from Kesselt (Belgium). Laboratoire de Géographie Physique, Meudon (France): 12 pp.Google Scholar
Paulissen, E., 1973. De morfologie en de kwartairstratigrafie van de Maasvallei in Belgisch Limburg. Verhandelingen van de Koninklijke Academie voor Wetenschappen, Letteren en Schone Kunsten van België 35: 127 pp.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Benders, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E. & Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429436.CrossRefGoogle Scholar
Prson, S., 2007. Contribution à l'étude des dépôts d'entrée de grotte en Belgique au Pléistocène supérieur; stratigraphie, sédimentogenèse et paléoenvironnement. Université de Liège (Liège) (unpublished PhD thesis): 435 pp.Google Scholar
Penkman, K.E.H, Preece, R.C., Keen, D.H., Maddy, D., Schreve, D.C. & Collins, M.J., 2007. Testing the aminostratigraphy of fluvial archives, the evidence from intra-crystalline proteins within freshwater shells. Quaternary Science Reviews 26: 29582969.CrossRefGoogle ScholarPubMed
Prokopenko, A.A., Hinnov, L.A., Williams, D.F. & Kuzmin, M.I., 2006. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Review 25: 34313457.CrossRefGoogle Scholar
Prokopenko, A.A., Bezrukova, E.V., Khursevich, G.K., Solotchina, E.P., Kuzmin, M.I. & Tarasov, P.E., 2010. Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia. Climate of the Past 6: 3148.CrossRefGoogle Scholar
Reille, M., Andrieu, V., de Beaulieu, J.-L, Guenet, P. & Goeury, C., 1998. A long pollen record from Lac du Bouchet, Massif Central, France: for the period ca. 325 to 100 ka (OIS 9c to OIS 5e). Quarternary Science Reviews 17: 11071123.CrossRefGoogle Scholar
Roebroeks, W., 1988. From Find Scatters to Early Hominid Behaviour. A Study of Middle Palaeolithic Riverside Settlements at Maastricht-Belvédère (the Netherlands), Leiden (= Analecta Praehistorica Leidensia 21).Google Scholar
Schirmer, W., 1999. Kaltzeiten und Warmzeiten im Löss. In: Becker-Haumann, R. & Frenchen, M. (eds): Terrestrische Quartärgeologie (Köln): 81100.Google Scholar
Schirmer, W., 2000. Eine Klimakurve des Oberpleistozäns aus dem rheinischen Löss. Eiszeitalter und Gegenwart 50: 2549.Google Scholar
Schirmer, W., 2002. Compendium of the Rhein loess sequence. In: Ikinger, A. & Schirmer, W. (eds): Loess units and solcomplexes in the Niederrhein and Maas area. Terra Nostra 1: 823.Google Scholar
Tuffreau, A. & Antoine, P., 1995. The earliest occupation of Europe: Continental Northwestern Europe. In: Roebroeks, W. & Van Kolfschoten, T. (eds): The earliest occupation of Europe: 147163.Google Scholar
Tzedakis, P.C., Andrieu, V., De Beaulieu, J.-L., Crowhurst, S., Follieri, M., Hooghiemstra, H., Magri, D., Reille, M., Sadori, L., Shackleton, N.J. & Wijmstra, T.A., 1997. Comparison of terrestrial and marine records of changing climate of the last 500 000 years. Earth and Planetary Science Letters 150: 171176.CrossRefGoogle Scholar
Van Baelen, A., Meijs, E.P.M, Van Peer, Ph., De Warrimont, J.P. & De Bie, M., 2007. An Early Middle Palaeolithic site at Kesselt – Op de Schans (Belgian Limburg), Preliminary results. Notae Praehistoricae 27: 1926.Google Scholar
Van Baelen, A., Meijs, E.P.M, Van Peer, Ph., De Warrimont, J.P. & De Bie, M., 2008. The Early Middle Palaeolithic Site of Kesselt – Op de Schans (Belgian Limburg), Excavation Campaign 2008. Notae Praehistoricae 28: 59.Google Scholar
Van Baelen, A., 2012. A contribution of high resolution data to the study of the Lower-Middle Palaeolithic transition. PhD thesis, Katholieke Universiteit Leuven (in preparation).Google Scholar
Van Kolfschoten, T., Roebroeks, W. & Vandenberghe, J., 1993: The Middle and Late Pleistocene sedimentary and climatic sequence at Maastricht-Belvédère. In: Vandenberghe, J., Roebroeks, W. & Van Kolfschoten, T. (eds): Maastricht-Belvédère: stratigraphy, palaeoenvironment and archaeology of the Middle and Late Pleistocene deposits Part II. Mededelingen Rijks Geologische Dienst 47: 8191.Google Scholar
Van de Moortel, K., 2008. Een bijdrage tot het geochronologisch onderzoek met de luminescentiedateringsmethode van de midden-pleistocene loessafzettingen te Vroenhoven (Belgisch Limburg). Licentiate thesis, Ghent University, 114 pp.Google Scholar
Van den Berg, M.W., 1996. Fluvial sequences of the Maas, a 10 Ma record of neotectonics and climate change at various timescales. Thesis. University Wageningen: 181 pp.Google Scholar
Vandenberghe, J., 1993. River terrace development and its relation to climate: the Saalian Caberg terrace of the Maas river near Maastricht (the Netherlands). In: Vandenberghe, J., Roebroeks, W. & Van Kolfschoten, T. (eds): Maastricht-Belvédère: stratigraphy, palaeoenvironment and archaeology of the Middle and Late Pleistocene deposits Part II. Mededelingen Rijks Geologische Dienst 47: 1924.Google Scholar
Vandenberghe, J., Mommersteeg, H. & Edelman, D., 1993. Lithogenesis and geomorphological processes of the Pleistocene deposits at Maastricht-Belvédère. In: Vandenberghe, J., Roebroeks, W. & Van Kolfschoten, T. (eds): Maastricht-Belvédère: stratigraphy, palaeoenvironment and archaeology of the Middle and Late Pleistocene deposits Part II. Mededelingen Rijks Geologische Dienst 47: 718.Google Scholar
Vandenberghe, J., Roebroeks, W. & Van Kolfschoten, T. (eds), 1993. Maastricht-Belvédère: stratigraphy, palaeoenvironment and archaeology of the Middle and Late Pleistocene deposits Part II. Mededelingen Rijks Geologische Dienst 47, 91 pp.Google Scholar
Vandenberghe, J., Huijzer, B., Mücher, H. & Laan, W., 1998. Short climatic oscillations in a western European loess sequence (Kesselt, Belgium). Journal of Quaternary Science 13 (5): 471485.3.0.CO;2-T>CrossRefGoogle Scholar
Van Gijssel, K., 2006. A continent-wide framework for local and regional stratigraphies. Thesis, Rijks Universiteit Leiden, 120 pp.Google Scholar
Van Vliet-Lanoë, B., 1985. Frost effects in soils. In: Boardman, J. (ed.): Quaternary Landscape Evolution. Wiley (London): 117158.Google Scholar
Van Vliet-Lanoë, B., 1986. Le Pédocomplexe du dernier interglaciaire (de 125 000 à 75 000 BP): Variations de faciès et signification paléoclimatique du sud de la Pologne à l'ouest de la Bretagne. Bulletin de l'Association francaise pour l'étude du Quaternaire 25–26: 139150.CrossRefGoogle Scholar
Vroomans, J.-M., Gullentops, F., Vanderbeken, T., Groenendijk, K. & Van Peer, Ph., 2006. De Midden-Paleolithische vindplaats Veldwezelt-Op de Schans (Limburg): een voorlopig rapport. Anthropologica et Praehistorica 117: 512.Google Scholar
Wolff, E.W., Barbante, C., Becagli, S., Bigler, M., Boutron, C.F., Castellano, E., de Angelis, M., Federer, U., Fischer, H., Fundel, F., Hansson, M., Hutterli, M., Jonsell, U., Karlin, T., Kaufmann, P., Lambert, F., Littot, G.C., Mulvaney, R., Röthlisberger, R., Ruth, U., Severi, M., Siggaard-Andersen, M.L., Sime, L.C., Steffensen, J.P., Stocker, T.F., Traversi, R., Twarloh, B., Udisti, R., Wagenbach, D. & Wegner, A., 2010. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quaternary Science Reviews 29: 285295.CrossRefGoogle Scholar