Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T20:24:14.963Z Has data issue: false hasContentIssue false

Geo(Im)pulse | River Meuse suspended sediment yield: a new estimate and past estimates revisited

Published online by Cambridge University Press:  01 April 2016

P.J. Ward*
Affiliation:
Department of Palaeoclimatology and Geomorphology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands. Email:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Despite increasing research into changes in the discharge of the River Meuse, estimates of the river’s sediment yield are less forthcoming. Three published studies (in 1883, 1982, and 1987) have estimated suspended sediment yield at the Belgian-Dutch border; the latter two studies surmise that this increased substantially between the late 19th and 20th Centuries. In this paper a more recent and longer time-series of observed discharge and suspended sediment data (1995 – 2005) is used to estimate mean annual suspended sediment yield (ca. 386,000 Mg.a−1), and the results of the previous studies are revisited. New insights suggest that those studies do not in themselves provide evidence of increased sediment yield: the higher estimates in the late 20th Century could equally be due to interannual variability or methodological differences. Furthermore, there has been no significant increase in rainfall erosivity between the late 19th and 20th Centuries, and the effect of land use change over that time would have been to cause a decrease in suspended sediment yield, rather than an increase.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Asselman, N.E.M., 1997. Suspended sediment in the River Rhine. The impact of climate change on erosion, transport, and deposition. Ph.D. thesis. Universiteit Utrecht (Utrecht): 257 pp.Google Scholar
Boers, P.C.M., 1996. Nutrient emissions from agriculture in the Netherlands: causes and remedies. Water, Science and Technology 33: 183189.Google Scholar
Close-Lecocg, J.F., Pissart, A. & Koch, G., 1982. Les transports en suspension et en solution de la Meuse à Liege et à Tailfer (amont de Namur). Bulletin de la Société Géographique de Liège 18: 518.Google Scholar
De Wit, M.J.M. & Behrendt, H., 1999. Nitrogen and Phosphorus emissions from soil to surface water in the Rhine and Elbe basins. Water Science Technology 39: 109116.Google Scholar
Doemen, A.M.C., Wijma, E., Zwolsman, J.J.G. & Middelkoop, H., 2007. Predicting suspended sediment concentrations in the Meuse River using a supply-based rating curve. Hydrological Processes, in press, doi:10.1002/hyp.6767.Google Scholar
Ferguson, R.I., 1986. River loads underestimated by rating curves. Water Resources Research 22: 7476 CrossRefGoogle Scholar
Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukentis, A., Aberfeld, R., Van Engelen, A.F.V., Forland, E., Mietus, M., Coelho, F., Mares, C. Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, O.V. & Petrovic, P., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology 22: 14411453.Google Scholar
Lemin, G., Koch, G., Hurtgen, C. & Pissart, A., 1987. Les transports en suspension de la Meuse, l’Ourthe et la Höegne. Bulletin de la Société Géographique de Liège 22-23: 3961.Google Scholar
Hash, J.E. & Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. A discussion of principles. Journal of Hydrology 10: 282290.Google Scholar
Phillips, J.M., Webb, B.W., Walling, D.E. & Leeks, G.J.L., 1999. Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrological Processes 13: 10351050.3.0.CO;2-K>CrossRefGoogle Scholar
Renard, K.G. & Freimund, J.R., 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology 157: 287306.Google Scholar
Renard, K.M., Foster, G.R., Weesies, G.A., McCool, D.K. & Yoder, D.C., 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook vol. 703. U.S. Department of Agriculture (Washington D.C.): 384 pp.Google Scholar
Richards, K., Brasington, J. & Hughes, F., 2002. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology 47: 559579.Google Scholar
Robertson, D.M. & Roerish, E.D., 1999. Influence of various water quality sampling strategies on load estimates for small streams. Water Resources Research 35: 37473759.Google Scholar
Spring, W. & Prost, E., 1883. Étude sur les eaux de la Meuse. Annales de la Société Géologique de la Belgique 11: 123220.Google Scholar
Verstraeten, G. & Poesen, J., 1999. The nature of small-scale flooding, muddy floods and retention pond sedimentation in central Belgium. Geomorphology 29: 275292.CrossRefGoogle Scholar
Verstraeten, G., Poesen, J., Demarée, G. & Salles, C., 2006. Long-term (105 years) variability in rain erosivity as derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion rates. Journal of Geophysical Research 111: D22109, doi:10.1029/2006JD007169.CrossRefGoogle Scholar
Walling, D.E. & Webb, B.W., 1982. Sediment availability and the prediction of storm-period sediment yields. In: Walling, D.E. (ed): Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield. IAHS Publication number 137 (Wallingford, U.K., ): 327337.Google Scholar
Ward, P.J., Renssen, H., Aerts, J.C.J.H., Van Balen, R.T. & Vandenberghe, J., 2008. Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: impacts of long-term anthropogenic land use change and climate variability. Hydrology and Earth System Sciences 12: 159175, www.hydrol-earth-syst-sci.net/12/159/2008/.Google Scholar